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Plan for the lectures
• Evidence for DM from astrophysical and 

cosmological observations

• Implications for properties of particle DM 
candidates

• Mechanisms for generating DM particles

• DM models and their detection

• The PAMELA & Fermi rush

Useful reviews:
     -  Bergström, hep-ph/0002126
     -  Bertone, Hoper & Silk,  hep-ph/0404175



The discovery of DM and classical tests
DM in clusters:
In 1933 Zwicky claimed the existence of DM with a 
dynamical mass estimate of the Coma cluster:

Optical image of the 
Coma cluster, about 
1000 galaxies  within a 
radius of about 1 Mpc

Credit: Kitt Peak 



The discovery of DM and classical tests
DM in clusters:
In 1933 Zwicky claimed the existence of DM with a 
dynamical mass estimate of the Coma cluster:

Use the virial theorem: 〈V 〉 + 2〈K〉 = 0 (1)
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measure the velocity dispersion and geometrical size to get:
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i.e. about the same value with more modern dynamical 
approaches  (recall that                 ) 
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DM in clusters: mass estimates with X-ray observations

In clusters most baryonic mass is in the form of hot gas.

X-ray image of the 
Coma cluster with 
Chandra telescope

Credit: NASA, 
Yikhlinin et al.



DM in clusters: mass estimates with X-ray observations

Gas density maps are obtained from X-ray luminosity, 
X-ray spectra give temperature maps, i.e. pressure maps.

Example: in Abel 2029 (Lewis et al. 2003)

Assume that it is in thermal equilibrium within the 
underlying gravitational well. Its density distribution         
and pressure         satisfy:
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In clusters most baryonic mass is in the form of hot gas.



DM in clusters:

mass tomography through gravitational lensing:



DM in galaxies:
Mismatch in galactic rotation curves (first in ‘50s & ‘60s):

(Bergström, 2000)  
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Milgrom: no DM but modify Newton’s law introducing a 
minimum acceleration scale:
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(MOND)

rather than ∼ flat:



Milky Way rotation curve

“Maximal” disc “Minimal” disc

Klypin, Zhao & Somerville, 2001



Mapping the 
dynamics of the
Milky Way with 
Blue Horizontal 

Branch stars

Xue et al. (SDSS),
arXiv:0801.1232

– 38 –

Fig. 16.— As Figure 15, but here rotation curves were derived under the assumption of a
contracted NFW profile. The solid line is the best-fit rotation curve to the Vcir(r) estimates,
while the large symbols in the two plots are the Vcir(r) estimates. Contributions of the

adopted model components (i.e. disk, bulge, and halo) are plotted in different linestyles.
Estimates of virial mass, Mvir, virial radius, rvir, concentration parameter, c, and baryon

fraction, f, are labeled on the plots.
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Fig. 10.— (Upper panel) The distribution of Vl.o.s as a function of Galactocentric distance,
r, for the entire sample of halo BHB stars. (Lower panel) The velocity dispersion, σl.o.s, as a
function of Galactocentric distance. A best fit exponentially falling relationship is plotted.
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sample enables construction of the full line-of-sight velocity distribution at dif-

ferent Galactocentric radii. To interpret these distributions, we compare them to
matched mock observations drawn from two different cosmological galaxy forma-
tion simulations designed to resemble the Milky Way, which we presume to have

an appropriate orbital distribution of halo stars. Specifically, we select simulated
halo stars in the same volume as the observations, and derive the distributions

P(Vl.o.s/Vcir) of their line-of-sight velocities for different radii, normalized by the
simulation’s local circular velocity. We then determine which value of Vcir(r)

brings the observed distribution into agreement with the corresponding distribu-
tions from the simulations; these values as adopted as observational estimates for
Vcir(r) in the Milky Way’s halo. Subsequently, we apply a small correction, based

on the Jeans Equation, to account for slight deviations in the radial density distri-
bution of the simulated halo stars from the Milky Way’s actual stellar halo. This

procedure results in an estimate of the Milky Way rotation curve to ∼ 60 kpc,
which is found to be slightly falling and implies M(< 60 kpc) = 4.0±0.7×1011M!.
The radial dependence of the circular velocity, derived in statistically indepen-

dent bins, is found to be consistent with the expectations from an NFW dark
matter halo with the established stellar mass components at its center. If we

assume an NFW halo profile of characteristic concentration holds, we can use
the observations to estimate the virial mass of the Milky Way’s dark matter

halo, Mvir = 1.1 ± 0.2 × 1012M!. We have checked that the particulars of the
cosmological simulations are unlikely to introduce systematics larger than the
statistical uncertainties. This estimate implies that nearly 40% of the baryons

within the virial radius of the Milky Way’s dark matter halo reside in the stellar
components of our Galaxy.

Subject headings: Milky Way: halo — Milky Way: dark matter — stars: blue
horizontal branch stars

1. Introduction

The visible parts of galaxies are, in the current paradigm for galaxy formation, concen-

trations of baryons at the center of much larger dark matter halos, which have assembled
through hierarchical merging and gas cooling. Understanding the properties of these dark

matter host halos, their virial masses, concentration and radial mass profiles, vis-a-vis the
luminous properties of the main galaxy at the center, is crucial for modelling the dynamics
of the galaxy, for connecting observations of galaxies to large-scale cosmological dark matter
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DM in galaxies: the case for the Milky Way

There is evidence for the DM halo to be extended rather 
than in a disc-like structure: 
- tidal tail of the Sagittarius dwarf (e.g., Ibata et al. 2001; 
Martinez-Delgado et al. 2004)
- thickness of the gas layer in the Galaxy outskirts (Olling 
& Merrifield, 2002)

Build a self-consistent model, add in further info such as 
local velocity fields for given population of stars, ect. ect.,
and find that the mean value for the local DM density is:
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Actually matching the SDSS rotation curve, plus novel determinations of 
the local circular velocity (Reid et al., 2009) and of the Sun’s Galactocentric 
distance (Gillessen et al. 2009) to the classical dynamical tracers for the 
Galaxy, the local DM halo density is fairly well constrained: 

Figure 6: Marginal posterior pdf for the local Dark Matter density.Top left panel: assuming an Einasto
profile and applying all the constraints. Top right panel: assuming an Einasto profile and applying
different subsets of constraints. Global constraints include M(< 50kpc), M(< 100kpc) and Σ|z|<1.1kpc.
Tracers constraints include the local standard of rest data, the terminal velocities and data referring to
the high mass star forming regions. Bottom left panel: assuming a NFW profile and applying all the
constraints. Bottom right panel: assuming a Burkert profile and applying all the constraints. Curves
and bars have the same meaning as in the previous plots.
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Marginal posterior pdf for the 
local halo density for three 
different choices of the 
functional form for the MW 
DM profile. Results obtained 
with a Markov chain scan of a 
7-dimensional parameter space. 
In all cases the mean value 
found is about: 

Figure 10: The blue lines represent marginal posterior pdf for a few derived quantities obtained by a
MCMC scan with no observational constraints. The green dashed curve are the corresponding Likeli-
hoods. An Einasto profile has been assumed.

6 Conclusions

We have produced a novel study on the problem of constructing mass models for the
Milky Way, concentrating on features regarding the dark matter halo component. We

have implemented a variegated sample of dynamical observables for the Galaxy, includ-
ing several results which have appeared recently. We have also developed our analysis
introducing a rather general scheme to describe the different mass components for the

Milky Way, introducing a model with a large number of parameters (8 or 7 in total).
Compared to previous studies of this kind, which did concentrate on few sample choices

of values for the different parameters, we have studied the full parameter space by im-
plementing a Bayesian approach to the parameter estimation, analogously to what is

commonly done to estimate cosmological parameters, and a Markov Chain Monte Carlo
to explore it. Our results show that this novel approach is fully successful.

The main result of this analysis is a novel determination of the local dark matter

halo density which, assuming spherical symmetry and either an Einasto or an NFW
density profile, is found to be around 0.39 GeV cm−3 with a 1-σ error bar of about 7%;

more precisely we find a ρDM (R0) = 0.385± 0.027 GeV cm−3 for the Einasto profile and
ρDM(R0) = 0.389 ± 0.025 GeV cm−3 for the NFW. This is in contrast to the standard

assumption that ρDM(R0) is about 0.3 GeV cm−3 with an uncertainty of a factor of 2 to 3.
Our results indicate that this accuracy is preserved even considering other spherical dark
matter profiles such as the cored Burkert profile for which we find ρDM(R0) = 0.409 ±

21

with a 1-sigma error bar of 
about 7%. Spherical symmetry 
has been assumed for the DM 
halo profile. 

Einasto

BurkertNFW



The Standard Model for cosmology (ΛCDM model) as a 
minimal recipe, i.e. a given set of constituents for the 
Universe and GR as the theory of gravitation, to be 
tested against a rich sample of (large scale) observables: 
CMB temperature fluctuations, galaxy distributions, 
lensing shears, peculiar velocities, the gas distribution in 
the intergalactic medium, SNIa as standard candles, ... 
All point to a single “concordance” model:

Ω    ∼ 1Tot Ω    ∼ 0.24M Ω     ∼ 0.76DE ...

Ω      ∼ 0.20DM Ω   ∼ 0.04b
{

DM in the era of precision cosmology

Ω   in remarkable 
agreement with BBN!

b



(5-yr WMAP, 2009)

DM appears as the building block of all structures in the 
Universe: 

e.g., it accounts for the 
gravitational potential 
wells in which CMB 
baryon acoustic 
oscillations take place: 



The Universe is permeated by a loose network of DM 
filaments, intersecting in massive structures; gas 
accumulates therein and forms stars. 

gravitational scaffold
as detected in weak 

lensing surveys,
 Massey et al. 2007



What about giving up on GR as theory of gravitation and 
trying to avoid introducing dark matter?

MOND is not a theory of gravitation. The formulation 
of a covariant theory with MOND-like limit is very 
recent:  TeVeS (tensor-vector-scalar) 

gravity theory, Bekestein 2004 
The theory has not been tested yet against the full set of 
astrophysical and cosmological observables, still within 
the available subset, it does not look straightforward to 
match all observations, without introducing a (small) DM 
component.

We will stick to the idea that DM is needed, and 
it is in the form of some elementary particle. 



What do cosmology and astrophysics tell us  
about properties of DM particles?

There are 5 golden rules.  
1) DM is optically dark:  its electromagnetic coupling is 
suppressed since: a) it is does not couple to photons prior 
recombination; b) it does not contribute significantly to 
the background radiation at any frequency; c) it cannot 
cool radiating photons (as baryons do, when they collapse 
to the center of galaxies) ⇒ DM is dissipation-less 

Tight limits for particles with a millicharge, or electric/
magnetic dipole moment, see, e.g., Sigurdson et al. 2004



2) DM is collision-less:  

Lensing map of 
the cluster  
superimposed  on 
Chandra 
X-ray image, 
Clowe et al. 2006

Limits from the fact that you get spherical clusters as 
opposed to the observed ellipticity in real clusters (e.g. 
Miralda-Escude, 2000). More recently, limits from the
morphology of the recent merging in the 1E0657-558 
cluster (”Bullet” cluster): 



Sketch of the Bullet collision: the hot gas is collisional and 
experiences a drag force that slows it down and displaces it 
from the dark matter which is not slowed by the impact: 

In red: hot gas
In blue: dark matter 

Credit: NASA, 
M. Weiss



Optical, X-ray
(pink grading), 
lensing map (blue 
grading). Credit: 
NASA & ESO; 
M. Markevitch et 
al. 2006; Clowe et 
al. 2006.

Inferred limit of the self-interaction cross section per unit 
mass:                                        (Randall et al. 2007) in the 
range                                          claimed for self-interacting 
DM (Stergel& Steinhardt 2000)
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Constraints on the Self-Interaction Cross-Section of Dark Matter

from Numerical Simulations of the Merging Galaxy Cluster

1E 0657-56

Scott W. Randall1, Maxim Markevitch1,2, Douglas Clowe3,4, Anthony H. Gonzalez5, and

Marusa Bradač6

ABSTRACT

We compare recent results from X-ray, strong lensing, weak lensing, and
optical observations with numerical simulations of the merging galaxy cluster

1E 0657-56. X-ray observations reveal a bullet-like subcluster with a prominent
bow shock, which gives an estimate for the merger velocity of 4700 km s−1, while
lensing results show that the positions of the total mass peaks are consistent

with the centroids of the collisionless galaxies (and inconsistent with the X-ray
brightness peaks). Previous studies, based on older observational datasets, have

placed upper limits on the self-interaction cross-section of dark matter per unit
mass, σ/m, using simplified analytic techniques. In this work, we take advantage
of new, higher-quality observational datasets by running full N-body simulations

of 1E 0657-56 that include the effects of self-interacting dark matter, and com-
paring the results with observations. Furthermore, the recent data allow for a

new independent method of constraining σ/m, based on the non-observation of
an offset between the bullet subcluster mass peak and galaxy centroid. This

new method places an upper limit (68% confidence) of σ/m < 1.25 cm2 g−1.
If we make the assumption that the subcluster and the main cluster had equal
mass-to-light ratios prior to the merger, we derive our most stringent constraint

of σ/m < 0.7 cm2 g−1, which comes from the consistency of the subcluster’s ob-
served mass-to-light ratio with the main cluster’s, and with the universal cluster
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2Space Research Institute, Russian Academy of Science, Profsoyuznaya 84/32, Moscow 117997, Russia
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5Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL
32611, USA

6Kavli Institute for Particle Astrophysics and Cosmology, P.O. Box 20450, MS-29, Stanford, CA 94309,
USA
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value, ruling out the possibility of a large fraction of dark matter particles being

scattered away due to collisions. Our limit is a slight improvement over the pre-
vious result from analytic estimates, and rules out most of the 0.5 − 5 cm2 g−1

range invoked to explain inconsistencies between the standard collisionless cold

dark matter model and observations.

Subject headings: dark matter — clusters: individual (1E0657-56) — methods:

numerical — large scale structure of universe

1. Introduction

The nature of dark matter, which accounts for the majority of the mass in the Universe,
is one of the major outstanding problems of modern astrophysics. Although it is often

assumed that dark matter is collisionless, there is no a priori reason to believe that this is the
case, and it has been noted by other authors that a non-zero self-interaction cross-section can
have important astrophysical implications (e.g., Spergel & Steinhardt 2000). In particular,

self-interacting dark matter (SIDM) has been invoked to alleviate some apparent problems
with the standard cold dark matter (CDM) model, such as the non-observation of cuspy

mass profiles in galaxies (e.g., Moore 1994; Flores & Primack 1994; cf. Navarro et al. 1997;
Moore et al. 1999b) and the overprediction of the number of small sub-halos within larger
systems (e.g., Klypin et al. 1999; Moore et al. 1999a). Previous simulations and theoretical

studies suggest that a self-interaction cross-section per unit mass of σ/m ∼ 0.5 − 5 cm2 g−1

is needed to explain the observed mass profiles of galaxies (e.g., Davé et al. 2001; Ahn &

Shapiro 2003, though see also Ahn & Shapiro 2005). Earlier studies have found stringent
upper limits on σ/m, inconsistent with the above range (e.g., Yoshida et al. 2000a; Hennawi

& Ostriker 2002; Miralda-Escudé 2002, though see also Sand et al. 2002). However, in
general these studies require non-trivial assumptions or statistical samples of clusters and
full cosmological simulations.

Furlanetto & Loeb (2002) pointed out that if one observes an offset between the gas and

dark matter in a merging cluster, arising because of the ram pressure acting on the gas but not
the dark matter, it can be used to constrain the collisional nature of dark matter. Markevitch
et al. (2002, hereafter M02) found just such a cluster, 1E 0657-56, which in the Chandra

image shows a bullet-like subcluster exiting the core of the main cluster, with prominent
bow shock and cold front features, and a uniquely simple merger geometry (Markevitch et

al. 2002, hereafter M02). This gas bullet lags behind the subcluster galaxies, which led
M02 to suggest that this cluster could be used to determine whether or not dark matter is

collisional. If dark matter were collisionless, one would expect the subcluster dark matter



1) + 2) constrain the interaction strength: what about 
implications for the mass of  the dark matter particles? 
3) DM is in a fluid limit: we have not seen any 
discreteness effects in DM halos. Granularities would 
affect the stability of astrophysical systems. Limits from:

M  < 10  M ⋅p
6

M  < 10  M ⋅p
3

M  < 10  M ⋅p
4

globular clusters:

Poisson noise in Ly-α:

thickness of disks:

Machos + Eros microlensing seaches exclude MACHOs in 
the Galaxy in the mass range (10  - 10 ) M ⋅

7-

M  < 43 M ⋅phalo wide binaries:
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where Ds is the distance to the star and xDs is the distance to
the lens of mass M. The optical depth for microlensing, i.e. the
probability that at a given time a given star is amplified by more
than a factor 1.34, is

τ =
4πGD2s
c2

∫ 1

0

dxρ(x)x(1 − x) , (1)

where ρ is the mass density of lenses. For source stars in the
Magellanic Clouds, the order of magnitude of τ is f v2rot/c

2 ∼ f ×
10−6 where vrot ∼ 220 kms−1 is the rotation velocity of theMilky
Way and f is the fraction of the halo mass that is comprised
of lensing objects. The factor of proportionality between τ and
f v2rot/c

2 depends on the structure of the Halo. The benchmark
value is often taken to be that for a spherical isothermal halo of
core radius 5 kpc, the so-called “S model” used by the MACHO
collaboration (Alcock et al. 2000b; Griest 1991). For the Large
Magellanic Cloud (LMC) this gives

τlmc = 4.7 f × 10−7 . (2)

For the Small Magellanic Cloud (SMC), the S model gives
τsmc ∼ 1.4τlmc. For a flattened halo, one finds a smaller value,
typically τsmc ∼ τlmc (Sackett and Gould 1993).

Magellanic stars can also be lensed by non-halo stars, ei-
ther in the Magellanic Clouds or in the MilkyWay disk. Lensing
by disk stars is expected to have an optical depth of order 10−8

(Alcock et al. 2000b). The optical depth for lensing by “self-
lensing”, i.e. lensing by stars in the Clouds, is expected to range
from ∼ 5 × 10−8 in the center of the LMC bar to ∼ 0.5 × 10−8
at 3 deg from the bar (Mancini et al. 2004). For the SMC, the
self-lensing optical depth is expected to be somewhat larger,
∼ 4 × 10−8 averaged over the central 10 deg2 (Graff & Gardiner
1999).

Microlensing events are characterized by a timescale tE giv-
ing the time for the lens to travel a distance corresponding to its
Einstein radius, tE = rE/vt where vt is the lens’s transverse ve-
locity relative to the line of sight. For high amplification events,
2tE is the time over which the amplification is A > 1.34. Since rE
is proportional to the square root of the lens mass M, the mean
tE will scale like M

1/2. The S model has a 3-dimensional macho
velocity dispersion of 270 kms−1 and gives

〈tE〉 ∼ 70

(

M

M&

)1/2

days . (3)

Much excitement was generated by the MACHO collabora-
tion’s measurement of the LMC microlensing rate which sug-
gested that a significant amount of the Milky Way’s Halo is
comprised of machos. Their latest analysis (Alcock et al. 2000b)
used 13/17 observed events2 to measure an optical depth of
τlmc/10

−7 = 1.2+0.4−0.3 (stat) with an additional 20% to 30% sys-
tematic error. This would correspond to a Halo fraction 0.08 <
f < 0.50 (95% CL). The mean tE of their events was 40 d corre-
sponding to machos in the mass range 0.15M& < M < 0.9M&.
On the other hand the EROS collaboration (Lasserre et al. 2000;
Afonso et al. 2003a) has placed only an upper limit on the halo
fraction, f < 0.2 (95% CL) for objects in this mass range, rul-
ing out a large part of the range of f favored by the MACHO
collaboration.

Bennett (2005) argued that theMACHO optical depth should
be reduced to τlmc/10

−7 = 1.0± 0.3 in order to take into account

2 13 of the 17 events satisfied their so-called A criteria intended to
identify high signal-to-noise events. The other 4 events, so-called B
events, are selected by looser cuts.

contamination by variable stars. This paper made use of the ob-
servation by the EROS collaboration (Tisserand 2004) of fur-
ther variability of one of the MACHO A candidates, indicating
intrinsic stellar variability. The paper also noted that the spec-
trum of the MACHO B candidate MACHO-LMC-22 indicated
that the source is an active background galaxy, as reported in
Alcock et al. (2001b) where the event was eliminated from the
sample for studying high-mass lenses. Using four MACHO A
candidates whose microlensing nature was confirmed by preci-
sion photometry and the one A candidate rejected as a variable
star, Bennett (2005) performed a likelihood analysis to argue that
11±1 of the 13 A candidates are likely to be microlensing events,
yielding the revised optical depth.

Machos can also be searched for by monitoring M31 and
looking for temporal variations of surface brightness consistent
with a star in M31 being microlensed. Candidate events have
been reported by the VATT (Uglesich et al. 2004), WeCAPP
(Riffeser et al. 2003), POINT-AGAPE (Calchi Novati et al.
2005), MEGA (de Jong et al. 2006) and Nainital (Joshi et al.
2005) collaborations. The POINT-AGAPE and MEGA col-
laborations presented efficiency calculations allowing them
to constrain the content of the M31 and Milky Way halos.
The disagreement between these two collaborations parallels
that between the MACHO and EROS collaborations with the
AGAPE collaboration finding a halo fraction in the range
0.2 < f < 0.9, while the MEGA collaboration finds a halo
fraction f < 0.3.

In this paper, we extend our previous analysis to find τlmc <
0.36 × 10−7 (95% CL) for M ∼ 0.4M&, corresponding to
f < 0.08. Unlike the previous EROS limit, this is significantly
lower than the optical depth measured by the MACHO collabo-
ration. Unlike all previous analyses, we use only a bright, well-
measured subsample of the Magellanic stars, about 20% of the
total. We believe that the use of this bright subsample gives more
reliable limits on the optical depth than measurements using
faint stars. There are two reasons for this. First, bright stars have
well reconstructed light curves that permit discrimination of in-
trinsically variable stars. Second, the use of bright stars makes it
relatively simple to estimate so-called blending effects where re-
constructed fluxes can receive contributions from more than one
star, complicating the interpretation of events.

EROS-2 is a second generation microlensing experiment.
The first generation, EROS-1, consisted of two programs, both
at the European Southern Observatory (ESO) at La Silla, Chile.
The first program (Ansari et al. 1996a) used Schmidt photo-
graphic plates to monitor a 27 deg2 region containing the LMC
bar during the southern summer from October, 1990 through
April, 1993. With a sampling frequency of up to one image per
night, it was sensitive mostly to machos in the range 10−4M& <
M < 1M&. The second program (Renault et al. 1998) used
a 0.4 deg2 CCD mosaic from December 1991 through March,
1995 to monitor one field in the LMC bar and another in the
SMC. With up to 40 images taken per night, this program was
sensitive mostly to machos in the range 10−7M& < M < 10

−3M&.
The results of these two EROS-1 programs are summarized in
Renault et al. (1997).

The second generation program described here, EROS-2,
used the Marly 1 meter telescope at ESO, La Silla. The tele-
scope was equipped with two 0.95 deg2 CCD mosaics to monitor
93 deg2 in the Magellanic Clouds, 63 deg2 in the Galactic Bulge,
and 28 deg2 in the spiral arms of the Milky Way. The observa-
tions were performed between July 1996 and February 2003 (JD
between 2,450,300 and 2,452,700).
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ther variability of one of the MACHO A candidates, indicating
intrinsic stellar variability. The paper also noted that the spec-
trum of the MACHO B candidate MACHO-LMC-22 indicated
that the source is an active background galaxy, as reported in
Alcock et al. (2001b) where the event was eliminated from the
sample for studying high-mass lenses. Using four MACHO A
candidates whose microlensing nature was confirmed by preci-
sion photometry and the one A candidate rejected as a variable
star, Bennett (2005) performed a likelihood analysis to argue that
11±1 of the 13 A candidates are likely to be microlensing events,
yielding the revised optical depth.

Machos can also be searched for by monitoring M31 and
looking for temporal variations of surface brightness consistent
with a star in M31 being microlensed. Candidate events have
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f < 0.08. Unlike the previous EROS limit, this is significantly
lower than the optical depth measured by the MACHO collabo-
ration. Unlike all previous analyses, we use only a bright, well-
measured subsample of the Magellanic stars, about 20% of the
total. We believe that the use of this bright subsample gives more
reliable limits on the optical depth than measurements using
faint stars. There are two reasons for this. First, bright stars have
well reconstructed light curves that permit discrimination of in-
trinsically variable stars. Second, the use of bright stars makes it
relatively simple to estimate so-called blending effects where re-
constructed fluxes can receive contributions from more than one
star, complicating the interpretation of events.

EROS-2 is a second generation microlensing experiment.
The first generation, EROS-1, consisted of two programs, both
at the European Southern Observatory (ESO) at La Silla, Chile.
The first program (Ansari et al. 1996a) used Schmidt photo-
graphic plates to monitor a 27 deg2 region containing the LMC
bar during the southern summer from October, 1990 through
April, 1993. With a sampling frequency of up to one image per
night, it was sensitive mostly to machos in the range 10−4M& <
M < 1M&. The second program (Renault et al. 1998) used
a 0.4 deg2 CCD mosaic from December 1991 through March,
1995 to monitor one field in the LMC bar and another in the
SMC. With up to 40 images taken per night, this program was
sensitive mostly to machos in the range 10−7M& < M < 10

−3M&.
The results of these two EROS-1 programs are summarized in
Renault et al. (1997).

The second generation program described here, EROS-2,
used the Marly 1 meter telescope at ESO, La Silla. The tele-
scope was equipped with two 0.95 deg2 CCD mosaics to monitor
93 deg2 in the Magellanic Clouds, 63 deg2 in the Galactic Bulge,
and 28 deg2 in the spiral arms of the Milky Way. The observa-
tions were performed between July 1996 and February 2003 (JD
between 2,450,300 and 2,452,700).
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For 39 expected events, The upper limit is then τlmc < 0.36 ×
10−7. The limit on τlmc as a function of M is shown in Figure
15b. In the tE range favored by the MACHO collaboration, we
find

τlmc < 0.36 × 10−7 ×
[

1 + log(M/0.4M#)
]

95%CL , (17)

i.e.

f < 0.077 ×
[

1 + log(M/0.4M#)
]

95%CL , (18)

where f ≡ τlmc/4.7 × 10−7 is the halo mass fraction within the
framework of the S model. This limit on the optical depth is
significantly below the value for the central region of the LMC
measured by the MACHO collaboration (Alcock et al. 2000b),
τlmc/10

−7 = 1.2+0.4−0.3(stat.) ± 0.36(sys.) and the revised value of
Bennett (2005), τlmc/10

−7 = 1.0±0.3. The Alcock et al. (2000b)
optical depth used for the entire LMC predicts that EROS would
see ∼ 9 LMC events whereas none are seen.

For the SMC, the one observed event corresponds to an opti-
cal depth of 1.7 × 10−7 (Nstar = 0.86× 106). Taking into account
only Poisson statistics on one event, 0.05 < Nobs < 4.74 (90%
CL) this gives

0.085 × 10−7 < τsmc < 8.0 × 10−7 90%CL . (19)

This is consistent with the expectations of lensing by objects in
the SMC itself, τsmc ∼ 0.4 × 10−7 (Graff & Gardiner 1999). The
value of tE = 125 d is also consistent with expectations for self-
lensing 〈tE〉 ∼ 100 d for a mean lens mass of 0.35M#.

We also note that the self-lensing interpretation is favored
from the absence of an indication of parallax in the light curve
(Assef et al. 2006).

We can combine the LMC data and the SMC data to give a
limit on the halo contribution to the optical depth by supposing
that the SMC optical depth is the sum of a halo contribution,
τsmc−halo = ατlmc (α ∼ 1.4) and a self-lensing contribution τsl.
(We conservatively ignore contributions from LMC self-lensing
and from lensing by stars in the disk of the Milky Way.) For one
observed SMC event with tE = 125 d and zero observed LMC
events, the likelihood function is

L(τlmc, τsl) ∝
[

ατlmcΓ
′
h(tE) + τslΓ

′
sl(tE)
]

exp [−N(τlmc, τsl)]

where N(τlmc, τsl) is the total number of expected events (LMC
and SMC) as a function of the two optical depths as calcu-
lated with equation (8). The function Γ′

h
(tE) is the distribu-

tion (normalized to unit integral) expected for halo lenses of
mass M (Figure 14) and Γ′

sl
(tE) is the expected distribution for

SMC self-lensing taken from Graff & Gardiner (1999). We as-
sume the SMC self-lensing optical depth is that calculated by
Graff & Gardiner (1999) though the results are not sensitive to
this assumption. For macho masses less than 1M#, the likeli-
hood function is maximized for τlmc = 0 because there are
no LMC events in spite of the greater number of LMC source
stars. For M < 0.1M# the limit on the halo contribution ap-
proaches that one would calculate for no candidates in either
the LMC or the SMC because the observed tE of 125 d is too
long for a halo event. The calculated upper limit is shown as
the dashed line in Figure 15b. In the mass range favored by the
MACHO collaboration, the limit is slightly lower than that us-
ing only the LMC data. The combined limit would be somewhat
stronger if we assumed an oblate halo (α < 1.4) and somewhat
weaker if we assumed a prolate halo (α > 1.4). Constraints on
the shape of the Milky Way halo were recently summarized by
Fellhauer et al. (2006) who argued that the observed bifurcation
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Fig. 15. The top panel shows the numbers of expected events
as a function of macho mass M for the S model of Alcock et al.
(2000b). The expectations for EROS-2-LMC, SMC (this work)
are shown alongwith those of EROS-1 (Renault et al. 1997) with
contributions from the photographic plate program (Ansari et al.
1996a) and CCD program (Renault et al. 1998). The number of
events for EROS-2-SMC supposes τsmc = 1.4τlmc. In the lower
panel the solid line shows the EROS 95% CL upper limit on
f = τlmc/4.7 × 10−7 based on no observed events in the EROS-
2 LMC data and the EROS-1 data. The dashed line shows the
EROS upper limit on τlmc based on one observed SMC event in
all EROS-2 and EROS-1 data assuming τsmc−halo = 1.4τlmc. The
MACHO 95% CL. curve is taken from Figure 12 (A, no lmc
halo) of Alcock et al. (2000b).

of the Sagittarius Stream can be explained if the halo is close to
spherical.

A possible systematic error in our result could come from
our assumption that the optical depth due to binary lenses is
small, 10% of the total. An alternative strategy would have been
to relax the cuts so as to include the event shown in Figure 8.
We have chosen not to do this because the light curve itself is
not sufficiently well sampled to establish the nature of the event
(other than that it is not a simple microlensing event) and also
because of its anomalous position in the color-magnitude dia-
gram. We note also that the optical depth associated with the
event, τ = 0.7 × 10−8, is a factor ∼ 4 below the upper limit (17).

Another important question concerns the influence on our
results of the Bright-Sample magnitude cut. Since the cut was
not established before the event search, it is natural to ask if the
position of the cut was chosen to give a strong limit. In fact,
elimination of the cut would not change significantly the conclu-

Tisserand et al., 



Yoo, Chaname & Gould, 2003

M  < 10  M ⋅pNot very tight limits: M  < 10  GeVp
58⇒

1) + 2) constrain the interaction strength: what about 
implications for the mass of  the dark matter particles? 



4) DM is classical: it must behave classically to be 
confined on galactic scales, say 1 kpc, for densities 

, with velocities∼ GeV cm- 3
∼ 100 km s- 1

Two cases:

a) for bosons: the associated De Broglie wavelength

“Fuzzy” CDM ? Hu, Barkana & Gruzinov, 2000
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b) for fermions: Gunn-Tremaine bound (PRL, 1979)
Take DM as some fermionic fluid of non-interacting 
particles. Start from a (quasi) homogeneous configuration; 
Pauli exclusion principle sets a maximum to phase space 
density in this initial configuration: 
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Fine-grained     versus the coarse-grained       which is 
“observable” and whose maximum can only decrease:

Mtot(r < 50kpc) !
(

5.4+0.1
−0.4

)

· 1011M" (20)

Mtot = Mvir ! 1 − 2 · 1012M" (21)

Mstars+gas ! 4 · 1010M" (22)

ρDM (R0) ∼ 0.01M" pc−3 ∼ 0.3 GeV cm−3 (23)

1 pc = 3.08 · 1018 cm (24)

1M" = 1.12 · 1057 GeV (25)

λ =
h

p
! 4 mm

eV

Mp
(26)

vp ! 100 km s−1 (27)

λ ∼< 1 kpc (28)

Mp ∼> 10−22 eV (29)

f ini
max =

g

h3
(30)

df

dt
= 0 (31)

f (32)

f̄ (33)

f̄max ≤ fmax ≤ f ini
max (34)

f̄max =
ρ0

M4
p

1

(2πσ2)3/2
(35)

ρ0 ∼ 1 GeV cm−3 (36)

σ ∼ 100 km s−1 (37)

Mp ∼> 35 eV (38)

2

Mtot(r < 50kpc) !
(

5.4+0.1
−0.4

)

· 1011M" (20)

Mtot = Mvir ! 1 − 2 · 1012M" (21)

Mstars+gas ! 4 · 1010M" (22)

ρDM (R0) ∼ 0.01M" pc−3 ∼ 0.3 GeV cm−3 (23)

1 pc = 3.08 · 1018 cm (24)

1M" = 1.12 · 1057 GeV (25)

λ =
h

p
! 4 mm

eV

Mp
(26)

vp ! 100 km s−1 (27)

λ ∼< 1 kpc (28)

Mp ∼> 10−22 eV (29)

f ini
max =

g

h3
(30)

df

dt
= 0 (31)

f (32)

f̄ (33)

f̄max ≤ fmax ≤ f ini
max (34)

f̄max =
ρ0

M4
p

1

(2πσ2)3/2
(35)

ρ0 ∼ 1 GeV cm−3 (36)

σ ∼ 100 km s−1 (37)

Mp ∼> 35 eV (38)

2

Mtot(r < 50kpc) !
(

5.4+0.1
−0.4

)

· 1011M" (20)

Mtot = Mvir ! 1 − 2 · 1012M" (21)

Mstars+gas ! 4 · 1010M" (22)

ρDM (R0) ∼ 0.01M" pc−3 ∼ 0.3 GeV cm−3 (23)

1 pc = 3.08 · 1018 cm (24)

1M" = 1.12 · 1057 GeV (25)

λ =
h

p
! 4 mm

eV

Mp
(26)

vp ! 100 km s−1 (27)

λ ∼< 1 kpc (28)

Mp ∼> 10−22 eV (29)

f ini
max =

g

h3
(30)

df

dt
= 0 (31)

f (32)

f̄ (33)

f̄max ≤ fmax ≤ f ini
max (34)

f̄max =
ρ0

M4
p

1

(2πσ2)3/2
(35)

ρ0 ∼ 1 GeV cm−3 (36)

σ ∼ 100 km s−1 (37)

Mp ∼> 35 eV (38)

2

For a DM isothermal sphere: 
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5) DM is cold (or better it is not hot): at matter-radiation 
equality perturbations need to growth. If kinetic terms 
dominates over the potential terms, free-streaming erases 
structures. Defining the free-streaming scale:
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with a large contribution when             , i.e. up to
when the species goes non-relativistic, and we assumed 
radiation domination,     
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⇒ ⇒
One finds a free-streaming scale:
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Top-down formation history excluded by observations,
i.e. hot DM excluded. In the cold DM regime        is 
negligibly small. Warm DM stands in between and needs  
some particle in the keV mass range (Lyα data place 
constraints on this range). 

For a neutrino:
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The 5 golden rules imply, e.g., that Baryonic DM and 
Hot DM are excluded, and that Non-baryonic Cold 
DM is the preferred paradigm
They also imply that there is no dark matter candidate 
in the Standard Model of  particle physics
Still, constraints on particle physics models are rather poor



Further hints on the particle physicist’s perspective. The 
most beaten paths have been:

i)  DM as a thermal  relic product 
    (or in connection to thermally produced species); 
ii) DM as a condensate, maybe at a phase transition;
     this usually leads to very light scalar fields;
iii) DM generated at large T, most often at the end
     of (soon after, soon before) inflation; sample
     production schemes include gravitational
     production, production at reheating or during
     preheating, in bubble collisions, ... Candidates in
     this category are usually very massive.

How do you generate DM?



CDM as a condensate
Very light scalar created in state of coherent oscillations 
∼ Bose-condensate.
Consider a scalar               with potential                        ;
its eq. of motion is:
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When               oscillations start with frequency
⇒ coherent oscillations with modes behaving like matter:
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A slight variant of this picture applies to the axion, 
pseudo goldstone boson of Peccei-Quinn symmetry 
introduced to solve the strong CP problem
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Fig. 3. Summary of astrophysical
and cosmological axion limits as dis-
cussed in the text. The black sensitiv-
ity bars indicate the search ranges of
the CAST solar axion search and the
ADMX search for galactic dark matter
axions. Light-grey exclusion bars are
very model dependent

The requirement that the neutrino signal of SN 1987A was not excessively
shortened by axion losses pushes the limits down to ma ! 10 meV. However,
this limit involves many uncertainties that are difficult to quantify so that
it is somewhat schematic. The CAST search for solar axions [46] covers new
territory in the parameter plane of ma and gaγγ , but a signal would represent
a conflict with the SN 1987A limit. While this limit certainly suggests that
axions more plausibly have masses relevant for cold dark matter, a single
argument, measurement or observation is never conclusive.

In the DFSZ model, the limits from white-dwarf cooling based on the
axion-electron interaction and those from SN 1987A from the axion-nucleon
interaction are quite similar. Therefore, axion emission could still play an
important role as an energy-loss channel of both SNe and white dwarfs and
for other evolved stars, e.g. asymptotic giant stars.

In summary, axions provide a show-case example for the fascinating inter-
play between astrophysics, cosmology and particle physics to solve some of
the deepest mysteries at the interface between inner space and outer space.
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(assumes phase average; in 
case of no averaging or 
including extra components 
the mass range is widened)

Peccei-Quinn scale

ma ∼ 10−5 eV (60)

1/ma ∝ fa (61)

1/ma ∝ fa (62)

gaii ∝
1

fa
(63)

Laγγ = gaγγ aE · B (64)

4



DM detection needs to be considered case by case. For 
the axion there are generic couplings: 

ma ∼ 10−5 eV (60)

1/ma ∝ fa (61)

1/ma ∝ fa (62)

gaii ∝
1

fa
(63)

Laγγ = gaγγ aE · B (64)

4

In particular the axion-
electromagnetic field 

coupling has the form: 

Axion detection through 
resonant conversion in 

microwave cavities

ma ∼ 10−5 eV (60)

1/ma ∝ fa (61)

1/ma ∝ fa (62)

gaii ∝
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(63)

Laγγ = gaγγ aE · B (64)

4
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CDM particles as thermal relics
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some lighter SM state in thermal equilibrium.
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dilution by the 
volume expansion thermally averaged 

annihilation cross section
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Rephrase Boltzmann eq. scaling out the dependence on H 
on the l.h.s. by introducing: 
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being conserved in a comoving volume                    , i.e.
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For neutrinos:                            (but forget about HDM)                                               

For the freeze-out of a  relativistic species
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(standard cosmology)



WIMP DM candidates
The recipe for WIMP DM looks simple. Just introduce 
an extension to the SM with:

i) a new stable massive particle; 
ii) coupled to SM particles, but with zero electric and 
color charge;
ii b) not too strongly coupled to the Z   boson 
       (otherwise is already excluded by direct searches).

0

Solve the Boltzmann eq. and find its mass.

Likely, not far from M   , maybe together with additional 
particles carrying QCD color: LHC would love this setup!   

W



A recipe which can be implemented  in many SM extensions. Maybe the 
most delicate point is the requirement of stability. You can enforce it via a 
discrete symmetry:
• R-parity in SUSY models

• KK-parity in Universal Extra Dimension models (Servant & Tait, 
hep-ph/0206071)

• T-parity in Little Higgs models (Bickedal et al., hep-ph/0603077)

• Z symmetry in a 2 Higgs doublet SM extension (the “Inert doublet 
model”, Barbieri et al. hep-ph/0603188)

• Mirror symmetry in 5D models with gauge-Higgs unification 
(Serone et al., hep-ph/0612286)

• ...
or via an accidental symmetry, such as a quantum number preventing 
the decay: [Mirror DM], DM in technicolor theories (Gudnason et al., 
hep-ph/0608055), “minimal” DM (Cirelli et al., hep-ph/0512090) , ...

In most of these, DM appears as a by-product from a property 
considered to understand or protect other features of the theory.
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Neutralino LSP as DM

χ̃0
1 = N11B̃ + N12W̃

3 + N13H̃
0
1 + N14H̃

0
2

Mχ̃0
1,2,3,4

=





M1 0 − g′v1√
2

+ g′v2√
2

0 M2 + gv1√
2

− gv2√
2

− g′v1√
2

+ gv1√
2

0 −µ

+ g′v2√
2

− gv2√
2

−µ 0





In the MSSM there are four such states, with mass matrix:

and lightest mass eigenstate (most often the LSP):

A very broad framework, which gets focussed on narrow 
slices in the parameter space once more specific LSP 
DM frameworks are introduced. 
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Bulk region:  the lightest neutralino is Bino-like (since 
the RGEs give                   ); the thermal relic density is set 
by pair annihilation processes of the kind:
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mediated by a     in the t- & u-channels
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These annihilations have a helicity-flip suppression: 
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The P-wave, which is in general suppressed, takes over:  
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One finds a “light” neutralino, i.e. 100-150 GeV, in a regime 
barely allowed by accelerator constraints.  



Funnel region:  you still have a Bino-like neutralino and 
the thermal relic density is still set by pair annihilations 
into fermions:M1 ! 0.5M2 (99)
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but these are now driven by a        in a resonant s-channel, 
i.e. when the amplitude:
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gets a sharp enhancement in the limit 

In the cMSSM, this can happen for large         and the mass 
scale for the lightest neutralino may shift up to ∼ 700 GeV
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Coannihilation processes?
Suppose that the theory contains a set of  N states nearly 
degenerate in mass                         , with
and sharing a quantum number. Trace the evolution of 
densities simultaneously, since all states have comparable 
densities (and are essentially indistinguishable): 

Internal note on Boltzmann equation in case of coannihilations

Consider a setup with N supersymmetric particles χ1, χ2, ... χN , each
with mass mi and number of internal degrees of freedom gi. The ordering
is such that m1 ≤ m2 ≤ . . . ≤ mN . In the evolution equation the processes
that change the number density for one of the SUSY particles i are of three
kinds:

a) χi χj ↔ Xf
a ∀ j

b) χi X i
b ↔ χj Xf

b ∀ j $= i
c1) χj ↔ χi Xf

c ∀ j > i
c2) χi ↔ χj Xf

d ∀ i > j

(1)

where Xa, X i
b, Xf

b , Xf
c and Xf

d are (sets of) standard model particles. As-

sumption #1 is that these processes, as well as those in which the number
density is not altered, keep at all times the spectral shape of the distribution
functions in their thermal equilibrium form at a given temperature T , i.e.:

fk(Ek) = Ak f eq
k (Ek) = Ak

1

exp(Ek/T ) ± 1
≈ AK exp(−Ek/T ) (2)

with Ak $= Ak(Ek). Check whether the last step, i.e. Assumption #2, is
needed or not.

The evolution of number densities is described by a set of N coupled Boltz-
mann equations:
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with dΠ = g/(2π)3d3p/(2E) Assumption #3 is that for standard model
particles we can simply replace the distribution functions by the equilibrium
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ones, i.e. fx = f eq
x . For processes of type a), it follows that:

∏

xa∈Xf
a

f eq
xa = f eq

i f eq
j . (4)

Is this from principle of detailed balance and works for any f eq or do you need
Assumption #2 + conservation of energy? (most probably the second.)
Analogously, for processes of type b) one gets:
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Analogous to the 1-particle case, with the coannihilating 
species acting as dominant (parasite) degree of freedom if 
their annihilation rate is larger (smaller) than for the DM 
species, and a net decrease (increase) in the relic density.

After freeze-out, all particles decay to the stable state     .
It is sufficient to trace                   rather than each      :
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with dΠ = g/(2π)3d3p/(2E) Assumption #3 is that for standard model
particles we can simply replace the distribution functions by the equilibrium
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and

Γj→i =
∑

X

∫

∏

dΠ δ4(p)|Mj→iX|2 =
1

τj→i
, (11)

with τj→i the “partial lifetime” obtained by including only the terms with
the SUSY particle j in the final state.

If we need to trace the sum of the number density of all SUSY particles:

n =
∑

i

ni (12)

we find the usual equation:

dn

dt
= −3 H n −

∑

i,j

〈σijvij〉
(

ninj − neq
i neq

j

)

(13)

(to get it you need to use the relation: 〈σi→jvi→j〉 = 〈σj→ivj→i〉 · neq
j /neq

i ).
This equation is usually solved under Assumption #4:

ni

n
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To solve numerically this equation one usually introduces the quantities
Y ≡ n/s (plus the analogous for equilibrium number densities) where the
entropy density s satisfies the relation d (a3s) = 0, where a = a(t) the Uni-
verse scale factor, i.e. 3Hs + ds/dt = 0 with H the Hubble parameter. This
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=
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For fast                          , one has                  and: 

Internal note on Boltzmann equation in case of coannihilations

Consider a setup with N supersymmetric particles χ1, χ2, ... χN , each
with mass mi and number of internal degrees of freedom gi. The ordering
is such that m1 ≤ m2 ≤ . . . ≤ mN . In the evolution equation the processes
that change the number density for one of the SUSY particles i are of three
kinds:

a) χi χj ↔ Xf
a ∀ j

b) χi X i
b ↔ χj Xf

b ∀ j $= i
c1) χj ↔ χi Xf

c ∀ j > i
c2) χi ↔ χj Xf

d ∀ i > j

(1)

where Xa, X i
b, Xf

b , Xf
c and Xf

d are (sets of) standard model particles. As-

sumption #1 is that these processes, as well as those in which the number
density is not altered, keep at all times the spectral shape of the distribution
functions in their thermal equilibrium form at a given temperature T , i.e.:

fk(Ek) = Ak f eq
k (Ek) = Ak

1

exp(Ek/T ) ± 1
≈ AK exp(−Ek/T ) (2)

with Ak $= Ak(Ek). Check whether the last step, i.e. Assumption #2, is
needed or not.

The evolution of number densities is described by a set of N coupled Boltz-
mann equations:

dni

dt
= −3 H ni −

∑

j,Xf
a

∫
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dΠa|Ma|2δ4(pa)
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b
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+
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with dΠ = g/(2π)3d3p/(2E) Assumption #3 is that for standard model
particles we can simply replace the distribution functions by the equilibrium

1
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Stau coannihilation region:  a Bino-like neutralino is 
nearly degenerate in mass with a stau and the latter sets 
the thermal relic density:
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Figure 1: The effective annihilation cross section a) with coannihilations and b) without coan-
nihilations for model A (specified in Table 2 in Appendix C). The solid line shows the effective
annihilation cross section Weff/4E2

eff as a function of momentum peff , while the dashed line shows
the thermal weight factor κ(peff , T ). The thermally-averaged annihilation cross section is the inte-
gral over peff of the product of the two. Note that when including coannihilations, not only new
thresholds appear, but the freeze-out temperature is also changing, meaning that we sample a dif-
ferent region of the annihilation cross section. For this model, the relic density with coannihilations
is Ωχ, coannh2 = 0.135 and that without is Ωχ, no coannh2 = 1.43.

the position and height of the peak depends on the temperature considered and on the

particles involved.

We are now ready to show some examples of coannihilation effects. As already men-

tioned, the examples we display have the lightest neutralino as the LSP and are in the

mSUGRA framework. In Fig. 1a we consider a case in which the neutralino, with mass of

about 400 GeV, is nearly mass degenerate with the lightest stau. The lightest selectron, the

lightest smuon and the lightest stop are relatively close in mass as well. (To fully specify

the example models we present, the model parameters and some properties are given in

Table 2 in Appendix C. The model in Fig. 1 is model A in that table.) The solid curve

shows Weff/4E2
eff , and one can nicely see coannihilations appearing as thresholds at

√
s

equal to the sum of the masses of the coannihilating particles (just as final state thresh-

olds do). As usually happens when considering coannihilation effects with neutralinos as

the LSP, the χ0
1-χ

0
1 contribution to Weff is small compared with the one provided by the

coannihilating particles. The role of coannihilating particles can be quantified better with

a look at the function κ (dashed curve, in units of GeV−1, and with relative scale shown

on the right-hand side of the figure). The factor κ is plotted at the freeze out temperature,

defined as the temperature at which the abundance of the relic species is 50% higher than

the equilibrium value6, in this case T = mχ/24.3. On the top of the panel, the tick mark

6This is given here for illustrative purposes only; it is never actually exploited in the full computation

– 8 –

20

30

40

50

60

70

80

90
100

200

300

400

100 200 300 400 500 600 700 800 900 1000

m
 1/2

 [ GeV ]

m
 0

 [
 G

e
V

 ]

tan ! = 10, µ < 0, A
0
 = 0

isolevel curves for "h
2
; from the top:

"h
2
 = 0.3, 0.25, 0.2, 0.15, 0.1, 0.075, 0.05, 0.025

20

30

40

50

60

70

80

90
100

200

300

400

100 200 300 400 500 600 700 800 900 1000

m
 1/2

 [ GeV ]

m
 0

 [
 G

e
V

 ]

tan ! = 10, µ > 0, A
0
 = 0

isolevel curves for "h
2
; from the top:

"h
2
 = 0.3, 0.25, 0.2, 0.15, 0.1, 0.075, 0.05, 0.025

20

30

40

50

60

70

80

90
100

200

300

400

100 200 300 400 500 600 700 800 900 1000

m
 1/2

 [ GeV ]

m
 0

 [
 G

e
V

 ]

tan ! = 10, µ < 0, A
0
 = 0

#" / " = 1%, 20%, 100%, 500%

mass splitting = 25%, 10%, 5%, 2.5%

"h
2
 = 0.3

0.1

20

30

40

50

60

70

80

90
100

200

300

400

100 200 300 400 500 600 700 800 900 1000

m
 1/2

 [ GeV ]

m
 0

 [
 G

e
V

 ]

tan ! = 10, µ > 0, A
0
 = 0

#" / " = 1%, 20%, 100%, 500%

mass splitting = 25%, 10%, 5%, 2.5%

"h
2
 = 0.3

0.1

Figure 6: Results for tanβ = 10 and A0 = 0. The isolevel curves for the relic density Ωχh2 are
shown in the top panels. In the bottom panels, curves indicate how big the error on the relic density
would be if coannihilations were not included. The mass splitting between the lightest neutralino
and the lightest stau is also indicated.

lightest stau rather than the lightest neutralino: its upper bound marks the line along

which the (bino-like) neutralino and the lightest stau have equal mass.

We can give a schematic interpretation of the results displayed starting with the isolevel

curves on the top left corner of each panel, where all isolevel curves converge to a narrow

band. There, the model has a relatively heavy sfermion sector, and the lightest neutralino

mass is just a few GeV larger than half the Z0 boson mass. The bino pair annihilation rate

into fermions is dominated by the diagram with Z0 in the s-channel at energies just slightly

displaced from the Z0 resonance: this resonant annihilation leads to acceptable values of

– 14 –

lightest neutralino mass scale up to 300-400 GeV



Focus point region:  the parameter μ gets of the order 
or smaller than gaugino mass parameters; the lightest 
neutralino is in mixed state or Higgsino-like. The 
annihilation is driven by gauge boson final states, while 
sfermions are heavy.
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Figure 10: The relic density contours (solid lines) for models in the focus point region; tanβ = 30
and A0 = 0. In a) µ > 0 and in b) µ < 0. The kinematic chargino mass limit of 104 GeV and the
W+W− and tt̄ thresholds are indicated.

much larger values, when coannihilation effects are included, is evident, as well as the fact

that we do find a new maximum value of mχ. The results for negative µ are very similar,

while those for tan β = 10 are analogous, but show slightly more stringent upper bounds

on the neutralino mass.

4.2 Chargino coannihilations

In the focus point region, the value of the soft mass parameter (at the electro-weak scale)

for the Higgs doublet that couples to up-type quarks, mHu , is naturally of the electro-weak

scale, regardless of m0 [43]. As a consequence, the parameter µ is forced to be light, and

can be at the level of the gaugino mass parameter m1/2 or even lower. This implies that the

neutralino LSP may have a large Higgsino fraction and be nearly degenerate in mass with

the lightest chargino and the next-to-lightest neutralino. Especially at higher m0-values,

the Higgsino fraction can be very large, close to one. Hence, in this high m0 focus point

region, chargino (and neutralino) coannihilations are expected to be important. Chargino

coannihilations have been extensively studied in the generic MSSM context [45, 46, 10],

but have been rarely stressed in the mSUGRA framework (although they are included in

some recent analyses, e.g. [20, 44, 47]).

In Fig. 10 we show the lower part of the focus point region for tan β = 30 and A0 = 0.

The top-left corners of these figures are excluded due to no radiative electro-weak symmetry

breaking, but close to that region, we see the focus point region emerge. In this region,

the Higgsino fraction is usually small, but non-negligible, and the same is true for the

effect of chargino coannihilations. This is the part of the focus point region most often

discussed in the literature. However, if we continue to higher masses, we get a band of
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Figure 11: The relic density contours (solid lines) for high mass models where chargino coanni-
hilations are important; tanβ = 30, A0 = 0 and µ > 0. In a) coannihilations are not included,
whereas they are included in b). Neutralino mass contours are shown with dashed lines.
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Figure 12: We here show the effect of coannihilations for models where chargino coannihilations
are important; tanβ = 30, µ > 0 and A0 = 0. We show in a) ∆Ω/Ω ≡ (Ωno coann − Ωcoann)/Ωcoann

versus the neutralino mass and in b) the mass splitting between the lightest chargino and the
lightest neutralino versus the neutralino mass.

cosmologically interesting relic densities where the Higgsino fraction increases as we go

up in mass (at the highest masses, it is close to 1). In this case, coannihilations with

the lightest chargino (and the next-to-lightest neutralino(s)) occur and are important. In
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Most superpartners  
are light and detected 
at LHC (only heaviest 
stop, stau and 
neutralino are not seen 
in example displayed):

fairly accurate 
prediction for the 

relic density 

Nojiri, Polesello & Tovey, 2006
Relic density

There are favourable case, such as for the bulk region, in 
which you would reconstruct the relic density:

WIMPs at the LHC time. A few possibilities.



Even assuming a light 
M     (300 GeV), LHC 
finds only the gluino 
and 3 neutralinos: 

Baltz, Battaglia, Peskin & Wizansky, 2006

the relic density value 
is poorly reconstructed

Relic density

1/2

 ... and much less favourable cases, such as for the 
focus-point region:



Pair annihilation 
rate at T=0 (i.e. in 
today’s halos) of the 
order of the one at 
freeze-out (?)
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A very rich phenomenology expected for WIMPs:

i.e. a coupling to ordinary
matter, allowing for direct
detection or capture into
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Detection of WIMP DM



✶the crossing symmetry rarely applies;

In practice the scheme is much less predictive:

✶the spread in values for the T=0 annihilation rate may 
be substantial, because of:
- on the particle physics side, e.g., coannihilation, 
threshold, or resonance (resonance) effects,
- on the cosmological side, e.g., a late entropy release or 
a Universe expansion rate faster at freeze-out;

✶particles with color charge are seldom the (light) states 
setting the thermal relic density.

In blue: effect making detection harder
In red: larger rates expectedLegend



Direct detection:
The attempt to measure the 
recoil energy from elastic 
scattering of local DM WIMPs 
with underground detectors 
(cosmic-ray shielded).
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A WIMP halo particle of mass        and velocity     scatters on a target 
nucleus of mass        under a CM angle   , giving a recoil energy:

E.g., for:                  ,                         ,  

The expected rate is about the product of the # of target nuclei per unit 
mass, the WIMP flux and the WIMP-nucleon scattering cross section:

5

Qmax ∼ 20 keV (40)

F " ρχ

Mχ
· 〈v〉 (41)

R " NT F σχN " NT
ρχ

Mχ
〈v〉σχN " 4 events

kg day
ρ0.3

χ

M100
χ

〈v200〉
(

σ1 pb
χN

A

)
(42)

61̇023

A g
(43)



!"#$%&''()%*+,-./)%*+01+23+4%55!"#$%&''()%*+,-./)%*+01+23+4%55!"#$%&''()%*+,-./)%*+01+23+4%55!"#$%&''()%*+,-./)%*+01+23+4%55666657%&''(57%&''(57%&''(57%&''(

!"#$%&'(()*)+,'-.%&),)/,'0+%*-,)

123+4/.)-*%)+)*56

7839%0(%+4/.)-*%,-*5),:

;3!"#$%;).0/',6%'+%,<)%1-*,<=:%*):,%(*->)

?:,*0@<6:'/:

AB!"#$%&'()*+(',-./012

34567"'#$%&'6-()*012',0/1809:10).'4:.*10).

$-*,'/.)%-+&%+4/.)-*%@<6:'/:

A 3!"#$C+4/.)4:%).-:,'/%/*0::%:)/,'0+

4:4-..6%&0>'+-,):D%! E-,0>'/%+4>F)*GH

WIMP  DF

WIMP-nucleus
cross section

Integral on the WIMP 
velocity in the detector frame

More precisely the event rate, as a function of the LAB recoil energy is in 
the form:
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and       the most probable recoil 
energy.

For standard velocity distributions, 
one finds approximately:
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For WIMP DM in the form of Majorana fermions, 
there are two contributions to the cross section:
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Fig. 46. Tree level Feynman diagrams for neutralino–quark axial-vector (spin-dependent) elastic scattering. From Ref. [319].

which is roughly 10−9 picobarns, for TeV mass squarks. These results can vary dramatically, however,
depending on the characteristics of the model being considered (see Figs. 21 and 22).

We can contrast this with the much larger neutralino annihilation cross sections. Considering again

a gaugino-like neutralino, its amplitude for annihilations into bb̄ via psuedoscaler Higgs exchange (see
Eq. (164)) is roughly AA ∼ mb tan !

√
fh/mW± where fh is the higgsino fraction of the WIMP. The

annihilation cross section (Eq. (179)) is then roughly " ∼ 3m2
btan

2!fh/128#m2
$m

2
W± . For even a very

small higgsino fraction, say 1%, and a 200GeV neutralino, we find a cross section of ∼ 10−3 picobarns
for small values of tan ! and a few picobarns for tan ! = 30 (Fig. 46).

C.2. Axial–vector interactions

Next, we consider a WIMP with axial–vector interactions with quarks given by

LA = dq $̄%&%5$q̄%&%5q , (207)

where dq is the generic coupling.

For such a WIMP, the spin-dependent scattering cross section can be written as [259]

d"

d|$v|2 = 1

2#v2
|T (v2)|2 , (208)

where v, again, is the relative velocity of the WIMP, and T (v2) is the scattering matrix element. This
expression can be integrated over the Boltzman velocity distribution of haloWIMPs to arrive at an average

elastic scattering cross section. At zero momentum, the matrix element, T (v2), is given by

|T (0)|2 = 4(J + 1)

J
|(du'p

u + dd'p
d + ds'

p
s )〈Sp〉 + (du'n

u + dd'n
d + ds'

n
s )〈Sn〉|2 , (209)

where J is the nuclear spin and the '’s are the fraction of the nucleon spin carried by a given quark. Their
values are measured to be 'p

u ='n
d =0.78±0.02, 'p

d ='n
u =−0.48±0.02 and 'p

s ='n
s =−0.15±0.02.

〈Sp〉 and 〈Sn〉 are the expectation values of the total spin of protons and neutrons, respectively. Notice
that for target nuclei with even numbers of protons and neutrons, there is zero total spin, and the cross

section vanishes.

The values of 〈Sp〉 and 〈Sn〉 depend on the nucleus being considered. For 73Ge, the interacting shell
model finds 〈Sp〉 and 〈Sn〉 to be 0.011 and 0.468, respectively. For 28Si, they are given by −0.0019 and
0.133. For 27A, they are 0.3430 and 0.269. And for 39K, they are −0.184 and 0.054 [368].

Axial-vector 
(spin-dependent)

scalar
(spin-independent)
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Here, Pn = 1+ (m!n
/m!)

2 − 1
2
(mA/m!)

2 − 1
2
(mh/m!)

2. The other quantities have been defined earlier

in this appendix. Again, the amplitude for the analogous process with a heavy rather than light Higgs

boson in the final state is the same, but with sin(" + #) and cos(" − #) exchanged and the light Higgs
couplings and masses replaced with those for the heavy Higgs boson.

In the low velocity limit, there is no amplitude for neutralino annihilations to H+H−, h0h0, H 0H 0,

A0A0 or Z0A0.
The low velocity cross section for neutralino annihilation via any of these modes is

$v(!! → XY)v→0 = #XY

128%m2
!
|A(!! → XY)v→0|2 , (196)

where X and Y are labels referring to the final state particles.

B.4. Annihilation into photons

Although there are no tree level processes for neutralino annihilation into photons, loop level processes

to && and &Z0 are very interesting, as they may provide a spectral line feature observable in indirect
detection experiments.

In Fig. 42, all of the one-loop diagrams are shown for neutralino annihilation to a pair of photons. In

Fig. 43, the corresponding diagrams to a photon and a Z0 are shown. We do not include the correspond-
ing amplitudes or cross sections here. For those results, see Refs. [79,480] for && and &Z0 final states,
respectively. Also see Ref. [271] (Fig. 44).

Appendix C. Elastic scattering processes

C.1. Scalar interactions

Consider a WIMP with scalar interactions with quarks given by

Lscalar = aq !̄!q̄q , (197)

where aq is theWIMP-quark coupling. Then the scattering cross section for theWIMP off of a proton or

neutron is given by

$scalar =
∫ 4m2r v

2

0

d$(v = 0)

d|#v|2 = 4m2
r

%
f 2p,n , (198)

where v is the relative velocity of the WIMP, mr is the reduced mass of the nucleon (mr $ mp,n for

WIMPs heavier than ∼ 10GeV) and fp,n is the WIMP coupling to protons or neutrons, given by

fp,n =
∑

q=u,d,s

f
(p,n)
T q aq

mp,n

mq
+ 2

27
f

(p,n)
TG

∑

q=c,b,t

aq
mp,n

mq
, (199)
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Fig. 46. Tree level Feynman diagrams for neutralino–quark axial-vector (spin-dependent) elastic scattering. From Ref. [319].

which is roughly 10−9 picobarns, for TeV mass squarks. These results can vary dramatically, however,
depending on the characteristics of the model being considered (see Figs. 21 and 22).

We can contrast this with the much larger neutralino annihilation cross sections. Considering again

a gaugino-like neutralino, its amplitude for annihilations into bb̄ via psuedoscaler Higgs exchange (see
Eq. (164)) is roughly AA ∼ mb tan !

√
fh/mW± where fh is the higgsino fraction of the WIMP. The

annihilation cross section (Eq. (179)) is then roughly " ∼ 3m2
btan

2!fh/128#m2
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2
W± . For even a very

small higgsino fraction, say 1%, and a 200GeV neutralino, we find a cross section of ∼ 10−3 picobarns
for small values of tan ! and a few picobarns for tan ! = 30 (Fig. 46).

C.2. Axial–vector interactions

Next, we consider a WIMP with axial–vector interactions with quarks given by

LA = dq $̄%&%5$q̄%&%5q , (207)

where dq is the generic coupling.

For such a WIMP, the spin-dependent scattering cross section can be written as [259]
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2#v2
|T (v2)|2 , (208)

where v, again, is the relative velocity of the WIMP, and T (v2) is the scattering matrix element. This
expression can be integrated over the Boltzman velocity distribution of haloWIMPs to arrive at an average

elastic scattering cross section. At zero momentum, the matrix element, T (v2), is given by

|T (0)|2 = 4(J + 1)

J
|(du'p

u + dd'p
d + ds'

p
s )〈Sp〉 + (du'n

u + dd'n
d + ds'

n
s )〈Sn〉|2 , (209)

where J is the nuclear spin and the '’s are the fraction of the nucleon spin carried by a given quark. Their
values are measured to be 'p

u ='n
d =0.78±0.02, 'p

d ='n
u =−0.48±0.02 and 'p

s ='n
s =−0.15±0.02.

〈Sp〉 and 〈Sn〉 are the expectation values of the total spin of protons and neutrons, respectively. Notice
that for target nuclei with even numbers of protons and neutrons, there is zero total spin, and the cross

section vanishes.

The values of 〈Sp〉 and 〈Sn〉 depend on the nucleus being considered. For 73Ge, the interacting shell
model finds 〈Sp〉 and 〈Sn〉 to be 0.011 and 0.468, respectively. For 28Si, they are given by −0.0019 and
0.133. For 27A, they are 0.3430 and 0.269. And for 39K, they are −0.184 and 0.054 [368].
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Fig. 44. Tree level Feynman diagrams for neutralino–quark scalar (spin-independent) elastic scattering. From Ref. [319].
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Fig. 45. Feynman diagrams for neutralino–gluon scalar (spin-independent) elastic scattering. Notice that no tree level processes

exist. From Ref. [319].

The above expression is valid only at zero momentum transfer between the WIMP and the nucleon.

For finite momentum transfer, the differential cross section must be multiplied by a nuclear form factor.

The appropriate factor, called theWoods–Saxon form factor, is given by [221]

F(Q) =
(
3j1(qR1)

qR1

)2
exp[−(qs)2] , (202)

where j1 is the first spherical bessel function and the momentum transferred is q = √
smNQ. R1 is given

by
√

R2 − 5s2, where R and s are approximately equal to 1.2 fmA1/3 and 1 fm, respectively.
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For non-zero momenta, a more complex form of Eqs. (209) is needed. This equation is given by

|T (v2)|2 = (J + 1)

J
|(du!p

u + dd!p
d + ds!

p
s + du!n

u + dd!n
d + ds!

n
s )〈Sp + Sn〉F 0(v2)

+ (du!p
u + dd!p

d + ds!
p
s − du!n

u + dd!n
d + ds!

n
s )〈Sp − Sn〉F 1(v2)|2 , (210)

where the F’s are nuclear form factors given by

F 0(v2) $ exp(−r20v
2/22) (211)

and

F 1(v2) $ exp(−r21v
2/22 + icv/2) , (212)

where r0 and r1 are parameters which depend on the nucleus being considered, with typical values of
1.3− 2.1 fm−1.
Again, within the context of neutralino scattering, the value of d2 can be calculated from the parameters

of the MSSM [211,223,266,275,276,426]. Following Ref. [209], d2 is in this case given by

d2 = 1

4(m2
1i − m2

")
[|Yi |2 + |Xi |2] + 1

4(m2
2i − m2

")
[|Vi |2 + |Wi |2]

− g2

4m2
Z cos

2 #W

[|N13|2 − |N14|2]
T3i

2
, (213)

where the quantities used are defined in C.1.

C.3. Vector interactions

As a third case, consider a WIMP with vector interactions with quarks, given by

L
q
vec = bq "̄$%" q̄$%q . (214)

Here, bq is the WIMP-quark vector coupling. In this case, the contributions of each quark in the nucleus

add coherently and large cross sections result for large nuclei. The WIMP-nucleus cross section in this

case is straight forward [266]

&0 vec =
m2

"m
2
Nb2N

64'(m" + mN)2
, (215)

where bN is simply bN = 2Zbp + (A − Z)bn.

As an example of a WIMP with vector interactions, consider a Dirac neutrino. In this case, bq =
GF (T 3q − 2eq sin

2 #W)/
√
2, whereGF is the Fermi constant, T

3
q and eq are the weak isospin and electric

change of the quark q, respectively, and #W is the Weinberg angle. Summing over the quarks in a proton

or neutron, we get bp = GF (1 − 4 sin2 #W)/(2
√
2) and bn = −GF /(2

√
2). Since 4 sin2 #W

∼= 1, the

neutron–neutrino cross section is much larger than the analogous proton–neutrino interaction. The Dirac

neutrino–neutron cross section is then given by &(,n = G2
F m2

(m
2
n/(512'(m( + mn)

2). A cross section of
this size has been ruled out by direct scattering experiments, except perhaps in the case of a very light

For Dirac fermions you have also:  

N.B.: a 4-th generation heavy neutrino or sneutrinos 
interact too strongly and are already excluded. 



Experimental status versus models:
Very intense experimental efforts in the last decade. Several experiments 
have published upper limits, improving of a factor of (a) few every year (final 
goal: ton-scale detectors increasing the present sensitivity of 100 (1000???))
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data compilation by J. Filippini, 2009
The MSSM neutralino DM parameter is being probed by spin-
independent limits; less sensitive to spin-dependent effects.  



Searches with neutrino telescopes
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No signal so far, km3 telescopes under construction

extra-clean signature!



Searches with neutrino telescopes

The DM signal is at a detectable level when the capture 
in the Sun/Earth is efficient, at (or close to) equilibrium 
between capture rate and annihilation rate.  

Significant limits at present (Baikal, Super-K, Amanda)
large sensitivity improvements for the future (IceCube, 
Antares, Nemo, KM3Net, ect.).

For the Earth, spin-independent coupling matters:
under standard assumptions for the WIMP distribution 
in the DM halo, direct detection sets stronger limits. 



Capture in the Sun  is mainly driven by the spin-dependent 
term; ν-telescopes probe this regime more efficiently than 
direct detection (in case of standard annihilation modes). 

SI versus SD?
the standard lore is 

that SI wins

IceCube

1-ton
detector



Icecube Coll. + DarkSUSY, 2007 

More generic MSSM scans, current limits and 
Icecube discovery potentials:
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There can be cases in which this pattern is reversed, 
see, e.g., a model with large Yukawas introduced in 
EW baryogenesis context:
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Tightest limits on the
model, direct detection 
is not excluding any 
region of the parameter 
space

Provenza, Quiros & 
P.U., 2005



Back to direct detection: signatures
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WIMP-nucleus
cross section

Integral on the WIMP 
velocity in the detector frame 
→ directional signals & 
temporal modulation effects

Signatures for direct detection

• Use a detector which can identify the direction

of the incident WIMP and apply angular discrim-

ination to tell signal from background: in 2003,

there is only one experiment, DRIFT, at the R&D

stage.

• Search for a modulation in the total event rate

(signal + background) to extract the signal: daily

modulation (rather small) or annual modulation

(at the level of about 5% of the signal)

GC

V0

J

D

30
0

Annual
Modulation:

In the formula for the detection rate:

background

JuneDecember

threshold
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Qmax ∼ 20 keV (40)
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an effect on the total
event rate of few %
(depending on

the WIMP DF)



Annual modulation detected by DAMA/LIBRA

Bernabei et al., arXiv:0804.2741

Large mass NaI detector, not discriminating between background and 
signal events but looking at temporal variation of the total event rate in 
different energy bins: 

By now 10 annual cycles, huge statistics and modulation effect solidly 
detected. Regarding its interpretation, the phase of the modulation and its 
amplitude are compatible and suggestive of WIMP DM scatterings; 
however converting the effect into a WIMP event rate, there is tension 
with other direct detection experiments. 



Savage et al., arXiv:0901.2713

Several analyses on the WIMP elastic scattering interpretation in the latest 
years, comparing different experiments (not totally trivial since DAMA is 
the only NaI detector, competitors run with Ge, Si, Xe, Ar, ...). Lately the 
discussion has been on ion channeling or not channeling, and different 
circular velocities for the Sun. 

Spin independent Spin dependent

There is (very little) room for a solution in case of 
light WIMPs (masses between, say, 2 and 10 GeV) 



... or explain DAMA out of the WIMP framework:



Search for those terms with small (or well-constrained) conventional (i.e. 
background) astrophysical components. Either as prompt yields 

antimatter gamma-rays (neutrinos)
or from interactions/back-reaction of yields (mostly electrons and 
positrons) on background radiation/fields:

radiative photon emission 
(synchrotron, inverse 
Compton, Bremsstralung)

S-Z effect
Heating

WIMP indirect detection via halo annihilation signals

Signatures:
1) in energy spectra: One single energy scale in the game, the WIMP 
mass, rather then sources with a given spectral index; edge-line 
effects? 
11) angular: flux correlated to DM halo shapes and with DM 
distributions within halos: central slopes, rich substructure pattern.
A fit of a featureless excess may set a guideline, but will be inconclusive.



The focus on electrons and positrons because of recent 
experimental results:
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Charged particles in the Galaxy
A random walk (maybe with a preferred drift direction) in turbulent & 
regular magnetic fields, modeled through a diffusion equation: 

3

zh D0 α va βinj,nuc βinj,e dvc/dz χ2
red color

kpc 1028 cm2s−1 km/s km/s kpc−1 (d.f.=19) coding

B0 4 3.3 1/3 35 1.85/2.36 1.50/2.54 0 0.67 blue

B1 1 0.81 1/3 35 1.65/2.36 1.50/2.54 0 0.77 green

B2 10 6.1 1/3 35 1.85/2.36 1.50/2.54 0 0.74 red

B3 4 3.25 1/3 45 1.85/2.36 1.50/2.54 10 0.84 orange

B4 4 1.68 1/2 22 2.4/2.2 2.1/2.54 0 0.86 cyan

B5 10 2.8 · e|z|/zs 1/3 35 1.85/2.36 1.50/2.54 0 0.66 magenta

TABLE I: Benchmark models of propagation. The spectral index break for protons and electrons is at 9 and 4 GeV, respectively,
in the cases with Kolmogorov diffusion, and at 40 and 10 GeV in the Kraichnan case. The scale of diffusion in the model B5
is taken to be zs = 4 kpc.

II. COSMIC-RAY PROPAGATION IN THE GALAXY

We adopt the description of cosmic-rays as particles propagating in a determinate environment (i.e., disregarding
the effects induced on the ISM by the interaction with CRs). The CR propagation equation for a particle species i
can be written in the form [? ]:

∂ni("r, p, t)

∂t
= "∇ · (Dxx

"∇ni − "vc ni) +
∂

∂p
p2Dpp

∂

∂p

1

p2
ni −

∂

∂p

[

ṗ ni −
p

3
("∇ · "vc)ni

]

+ q("r, p, t) +
ni

τf
+

ni

τr
(1)

where ni is the number density per particle momentum (ni(p)dp = Ni(E)dE, with Ni(E)dE being the number density
in the energy interval (E, E + dE)), q is the source term, Dxx is the spatial diffusion coefficient along the regular
magnetic field lines, "vc is the velocity of the Galactic wind, Dpp is the coefficient of the diffusion in momentum space, ṗ
is the momentum loss rate, and τf and τr are the time scales for fragmentation loss and radioactive decay, respectively.

The transport equation is solved numerically and assuming a cylindrical symmetry, with halo boundaries at disc
radius R = 20 kpc and half-thickness zh as described below. We exploited a modified version of the GALPROP code [?
]. The main modifications consist in introducing by input the spatial and spectral profiles of the DM source (computed
within the DarkSUSYpackage [? ]), and in including the possibility of a spatially varying diffusion coefficient.

In the following, we mainly consider one-zone models with isotropic diffusion, which can be regarded as the most
extensively tested models of the recent past (see, e.g., Ref. [? ] for a review).

Our approach is to perform self-consistent tests in the local region and the parameters in Eq. ?? are chosen to
strictly reproduce the local directly-observed spectra of nuclei and electrons.

The goal of the paper is to study the possibility of disentangling the diffuse signals originated from two different
sources, CRs and DM, having different spatial distributions. The CR injection source is confined to the Galactic
plane, while the DM profile has a spherical shape. The region with intermediate and large z is thus the best target
for the analysis. The propagation reshuffles the distribution of the two populations of electrons (and thus IC and
bremsstrahlung signals), and the γ-ray signal associated to the decays of CR pions. The scaling of the signal along
the z-direction is affected by almost any quantity entering in the transport equation, such as the description of the
diffusion, the wind velocity, the magnetic field structure, and the ISRF distribution. Moreover, it is dramatically
sensitive to the height of the propagation halo, namely, to the boundary condition along the z-axis.

We are not interested in performing a full scan of the propagation parameters space and estimate the corresponding
uncertainties in the CR spectra (see, e.g., Refs. [? ? ]); rather, we want to investigate how different scalings along
the z-direction due to different propagation models can affect the predictions for the signal to background ratio. We
consider six benchmark scenarios of propagation and injection spectra, which are summarized in Table 1. In the
following, we motivate our selection.

Halo height: In addition to the ”conventional” model having zh =4 kpc (named B0), we consider two models of
propagation in which the halo height has been set to zh=1 kpc (model B1) and zh=10 kpc (model B2). The strongest
constraints on the halo height is given by the ”radioactive clocks”, namely, unstable secondaries. Indeed, the ratio
between stable and decaying isotopes is sensitive to the CR confinement time, which is in turn related to the halo
height (and the diffusion coefficient). At present, the most precise measurements is the ratio 10Be/9Be, with the
unstable 10Be decaying in 106 years. In Fig. ??a, we show the spectra of the 10Be/9Be ratio. As expected, zh =4
kpc seems to be preferred by data. The model B2 is fully consistent with data at low energy (which are the most

spatial 
diffusion

reacceleration energy
loss

source

convection

   decay,
fragmentation

usually solved in steady state (l.h.s. put to zero) and applied to some 
schematic picture of the Galaxy : 

Rh

zh
thin gas 
layer, 
primary + 
secondary
sourcesDxx ! spat. const.(??) + Dpp ! spat. const.(??)

vc



1

wCR ! 0.5 eV cm−3 (1)

WCR ! wCRVconf ! 2 · 1055 erg (2)

LCR !
wCR

τconf
! 5 · 1040 ergs−1 (3)

LSN = RSNESN ! 3 · 1041 ergs−1 (4)

1

wCR ! 0.5 eV cm−3 (1)

WCR ! wCRVconf ! 2 · 1055 erg (2)

LCR !
wCR

τconf
! 5 · 1040 ergs−1 (3)

LSN = RSNESN ! 3 · 1041 ergs−1 (4)
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WCR ! wCRVconf ! 2 · 1055 erg (2)

LCR !
WCR

τconf
! 5 · 1040 ergs−1 (3)

LSN = RSNESN ! 3 · 1041 ergs−1 (4)

1

wCR ! 0.5 eV cm−3 (1)

WCR ! wCRVconf ! 2 · 1055 erg (2)

LCR !
WCR

τconf
! 5 · 1040 ergs−1 (3)

LSN = RSNESN ! 3 · 1041 ergs−1 (4)

What are the main sources of galactic cosmic rays?

The energy density in CRs is about:

The total energy stored in the 
confinement volume is then about: 

Dividing by the CR confinement time, 
you find the required CR luminosity:

Compare with the typical Supernova 
luminosity (rate times injected energy):

SNe are the CR sources 
if the efficiency is about 10-20%

Some simplified argument (close to numerology):



Start with primary nucleon species:
At “high energy” (say, above 10~GeV), energy losses and reacceleration are 
small:

3

zh D0 α va βinj,nuc βinj,e dvc/dz χ2
red color

kpc 1028 cm2s−1 km/s km/s kpc−1 (d.f.=19) coding

B0 4 3.3 1/3 35 1.85/2.36 1.50/2.54 0 0.67 blue

B1 1 0.81 1/3 35 1.65/2.36 1.50/2.54 0 0.77 green

B2 10 6.1 1/3 35 1.85/2.36 1.50/2.54 0 0.74 red

B3 4 3.25 1/3 45 1.85/2.36 1.50/2.54 10 0.84 orange

B4 4 1.68 1/2 22 2.4/2.2 2.1/2.54 0 0.86 cyan

B5 10 2.8 · e|z|/zs 1/3 35 1.85/2.36 1.50/2.54 0 0.66 magenta

TABLE I: Benchmark models of propagation. The spectral index break for protons and electrons is at 9 and 4 GeV, respectively,
in the cases with Kolmogorov diffusion, and at 40 and 10 GeV in the Kraichnan case. The scale of diffusion in the model B5
is taken to be zs = 4 kpc.

II. COSMIC-RAY PROPAGATION IN THE GALAXY

We adopt the description of cosmic-rays as particles propagating in a determinate environment (i.e., disregarding
the effects induced on the ISM by the interaction with CRs). The CR propagation equation for a particle species i
can be written in the form [30]:

∂ni("r, p, t)

∂t
= "∇ · (Dxx

"∇ni − "vc ni) +
∂

∂p
p2Dpp

∂
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ṗ ni −
p
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]

+ q("r, p, t) +
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τf
+
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τr
(1)

where ni is the number density per particle momentum (ni(p)dp = Ni(E)dE, with Ni(E)dE being the number density
in the energy interval (E, E + dE)), q is the source term, Dxx is the spatial diffusion coefficient along the regular
magnetic field lines, "vc is the velocity of the Galactic wind, Dpp is the coefficient of the diffusion in momentum space, ṗ
is the momentum loss rate, and τf and τr are the time scales for fragmentation loss and radioactive decay, respectively.

The transport equation is solved numerically and assuming a cylindrical symmetry, with halo boundaries at disc ra-
dius R = 20 kpc and half-thickness zh as described below. We exploited a modified version of the GALPROP code [31].
The main modifications consist in introducing by input the spatial and spectral profiles of the DM source (computed
within the DarkSUSYpackage [32]), and in including the possibility of a spatially varying diffusion coefficient.

In the following, we mainly consider one-zone models with isotropic diffusion, which can be regarded as the most
extensively tested models of the recent past (see, e.g., Ref. [33] for a review).

Our approach is to perform self-consistent tests in the local region and the parameters in Eq. 1 are chosen to strictly
reproduce the local directly-observed spectra of nuclei and electrons.

The goal of the paper is to study the possibility of disentangling the diffuse signals originated from two different
sources, CRs and DM, having different spatial distributions. The CR injection source is confined to the Galactic
plane, while the DM profile has a spherical shape. The region with intermediate and large z is thus the best target
for the analysis. The propagation reshuffles the distribution of the two populations of electrons (and thus IC and
bremsstrahlung signals), and the γ-ray signal associated to the decays of CR pions. The scaling of the signal along
the z-direction is affected by almost any quantity entering in the transport equation, such as the description of the
diffusion, the wind velocity, the magnetic field structure, and the ISRF distribution. Moreover, it is dramatically
sensitive to the height of the propagation halo, namely, to the boundary condition along the z-axis.

We are not interested in performing a full scan of the propagation parameters space and estimate the corresponding
uncertainties in the CR spectra (see, e.g., Refs. [34, 35]); rather, we want to investigate how different scalings along
the z-direction due to different propagation models can affect the predictions for the signal to background ratio. We
consider six benchmark scenarios of propagation and injection spectra, which are summarized in Table 1. In the
following, we motivate our selection.

Halo height: In addition to the ”conventional” model having zh =4 kpc (named B0), we consider two models of
propagation in which the halo height has been set to zh=1 kpc (model B1) and zh=10 kpc (model B2). The strongest
constraints on the halo height is given by the ”radioactive clocks”, namely, unstable secondaries. Indeed, the ratio
between stable and decaying isotopes is sensitive to the CR confinement time, which is in turn related to the halo
height (and the diffusion coefficient). At present, the most precise measurements is the ratio 10Be/9Be, with the
unstable 10Be decaying in 106 years. In Fig. 1a, we show the spectra of the 10Be/9Be ratio. As expected, zh =4 kpc
seems to be preferred by data. The model B2 is fully consistent with data at low energy (which are the most reliable),

Consider, e.g., primary protons. The source 
function is in the form:

1

wCR ! 0.5 eV cm−3 (1)

WCR ! wCRVconf ! 2 · 1055 erg (2)

LCR !
WCR

τconf
! 5 · 1040 ergs−1 (3)

LSN = RSNESN ! 3 · 1041 ergs−1 (4)

Dxx(p) ∝ pα (5)

α = 1/3 Kolmogorov
α = 1/2 Kraichnan

τconf ∝ 1/Dxx (6)

qp ∝ p−βini,p (7)

βini,p ! 2 (8)

φp ∝ qp · τconf ∝ p−βobs,p (9)

2

βobs,p ! 2.7 (10)

βini,p = βobs,p + α (11)

7

10
-1

10
0

10
1

10
2

10
3

E[GeV]

10
1

10
2

10
3

10
4

!
p
 [

G
eV

 m
-2

 s-1
 s

r-1
]

IMAX
BESS 98
CAPRICE
AMS
BESS 2002
ATIC-2

L
IS

m
o
d
u
la

te
d

" = 550 MV

10
1

10
2

10
3

10
4

10
5

10
6

10
7

E[MeV]

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

!
e [

M
eV

 c
m

-2
 s-1

 s
r-1

]

ATIC-1,2

PPB-BETS
BETS
HESS
CAPRICE
HEAT
SANRIKU

m
o
d
u
la

te
d

LIS

"=600 MV

primary

secondary

FIG. 2: Local proton (Left Panel) and electron (Right Panel) spectra. Data are compared to the benchmark models of
propagation B0 (blue), B1 (green), B2 (red), B3 (orange), B4 (cyan), and B5 (magenta), described in Table 1.

We model this additional component assuming that the spectrum at the sources is described by a power-law plus an
exponential cutoff: E−βinj,sas · exp(−E/Ec). We consider a Bohm diffusion inside the source, which implies a spectral
index βinj,sas = βinj,nuc − 1 (at high energy). The spatial part of this extra source is assumed to be the same as for
standard primary components. The normalization follows instead from the requirement that PAMELA data can be
fitted when including this additional term.

Although the physical insight for this picture is different from the case in which the enhancement in the positron
fraction is due to one or few nearby pulsars, from the point of view of testing the scenario through radiative emission
the two cases are hardly distinguishable. In both cases local sources dominate the signal, and in both cases these
sources are confined in the thin vertical layer where standard primary sources are confined. The discussion we present
below for secondaries at the sources is then readily extendable to the pulsar scenario.

C. Component from dark matter annihilations or decays

A further possibility is that the extra component needed to explain the rise in the positron fraction is an exotic
term due to dark matter in the Galactic halo. There are two possibilities: WIMP dark matter particles are stable
but can annihilate in pairs injecting a given species i; the source term associated to this process is given by:

Qa
i (r, E) = (σav)

ρ(r)2

2 M2
χ

×
dNa

i

dE
(E) , (3)

where ρ(r) is the Milky Way halo mass density profile, assumed for simplicity to depend only on the spherical
coordinate r, Mχ the mass of the dark matter particle, σv the pair annihilation rate for typical velocities of dark
matter particles in the Galactic halo (namely, in the zero temperature limit, as opposed to the finite temperature
regime which applies in the early Universe), and dNa

i /dE(E) is the number of particles i emitted per annihilation in
the energy interval (E, E+dE). The second possibility is that dark matter particles have a long but finite lifetime, and
the species i is injected in dark matter decays (for the interpretation of the PAMELA anomaly in terms of decaying
DM, see, e.g., [? ? ? ? ]); in this case the source function takes the form:

Qd
i (r, E) = Γd

ρ(r)

Mχ
×

dNd
i

dE
(E) , (4)

where Γd is the decay rate and dNd
i /dE(E) is the number of particles i emitted per decay in (E, E + dE).

The distribution of dark matter in the Galaxy is rather poorly known, and one has to rely on large extrapolations.
One possibility is to take N-body simulations of hierarchical clustering in cold dark matter cosmologies as a guideline.
Numerical results indicate that dark matter halos can be described by density profiles that sharply enhanced towards
the galactic center; there is still an on-going debate regarding how cuspy the profiles are, while, from the observational

Neglect for the moment also convection; spatial diffusion is the term 
setting the confinement time:
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Dxx(p) ∝ pα (5)

α = 1/3 Kolmogorov
α = 1/2 Kraichnan

1

wCR ! 0.5 eV cm−3 (1)

WCR ! wCRVconf ! 2 · 1055 erg (2)

LCR !
WCR

τconf
! 5 · 1040 ergs−1 (3)

LSN = RSNESN ! 3 · 1041 ergs−1 (4)

Dxx(p) ∝ pα (5)

α = 1/3 Kolmogorov
α = 1/2 Kraichnan

τconf ∝ 1/Dxx (6)

qp ∝ p−βini,p (7)

βini,p ! 2 (8)

φp ∝ p−βobs,p (9)

and (??)

Solving the propagation eq. and comparing 
the result to the local proton flux:

with

In fair agreement with 
the prediction:

2

βobs,p ! 2.7 (10)

βobs,p = βinj,p + α (11)

qB ∝ φC ∝ p−βobs,C (12)

φB ∝ p−βobs,B (13)

βobs,B = βobs,C + α (14)

φB/φC ∝ p−βobs,B+βobs,C = p−α (15)

with (strong shock 
  limit)

1

wCR ! 0.5 eV cm−3 (1)

WCR ! wCRVconf ! 2 · 1055 erg (2)

LCR !
WCR

τconf
! 5 · 1040 ergs−1 (3)

LSN = RSNESN ! 3 · 1041 ergs−1 (4)

Dxx(p) ∝ pα (5)

α = 1/3 Kolmogorov
α = 1/2 Kraichnan

τconf ∝ 1/Dxx (6)

qp ∝ p−βinj,p (7)

βinj,p ! 2 (8)

φp ∝ qp · τconf ∝ p−βobs,p (9)

1

wCR ! 0.5 eV cm−3 (1)

WCR ! wCRVconf ! 2 · 1055 erg (2)

LCR !
WCR

τconf
! 5 · 1040 ergs−1 (3)

LSN = RSNESN ! 3 · 1041 ergs−1 (4)

Dxx(p) ∝ pα (5)

α = 1/3 Kolmogorov
α = 1/2 Kraichnan

τconf ∝ 1/Dxx (6)

qp ∝ p−βinj,p (7)

βinj,p ! 2 (8)

φp ∝ qp · τconf ∝ p−βobs,p (9)



Apply the same to secondary nucleon species:
“Secondaries” are particles generated in the interaction of primary species 
with the interstellar medium in “spallation” processes.  Example: secondary 
Boron from the primary Carbon. The Boron source function proportional 
to the Carbon flux (after propagation): 

2

βobs,p ! 2.7 (10)

βobs,p = βini,p + α (11)

qB ∝ φC ∝ p−βobs,C (12)

φB ∝ p−βobs,B (13)

βobs,B = βobs,C + α (14)

φB/φC ∝ p−βobs,B+βobs,C =∝ p−α (15)

2

βobs,p ! 2.7 (10)

βobs,p = βini,p + α (11)

qB ∝ φC ∝ p−βobs,C (12)

φB ∝ p−βobs,B (13)

βobs,B = βobs,C + α (14)

φB/φC ∝ p−βobs,B+βobs,C =∝ p−α (15)

2

βobs,p ! 2.7 (10)

βobs,p = βini,p + α (11)

qB ∝ φC ∝ p−βobs,C (12)

φB ∝ p−βobs,B (13)

βobs,B = βobs,C + α (14)

φB/φC ∝ p−βobs,B+βobs,C =∝ p−α (15)

2

βobs,p ! 2.7 (10)

βobs,p = βini,p + α (11)

qB ∝ φC ∝ p−βobs,C (12)

φB ∝ p−βobs,B (13)

βobs,B = βobs,C + α (14)

φB/φC ∝ p−βobs,B+βobs,C = p−α (15)

The Boron flux (after propagation) 
is in the form:

predicting:

i.e., the secondary to primary ratio:

is predicted to be independent of 
the (unknown) Carbon injection 
index.
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FIG. 1: Local 10Be/9Be (Left Panel) and B/C (Right Panel) ratios. Data are compared to the benchmark models for propa-
gation B0 (blue), B1 (green), B2 (red), B3 (orange), B4 (cyan), and B5 (magenta). For details on the models see Table 1 and
text.

The diffusion coefficient D0 and Alfvén velocity va are tuned in order to reproduce the B/C ratio in all the benchmark
models. Values are reported in Table 1. Spectra of the B/C ratio are shown in Fig. ??b. The solar modulation is
computed in the force field approximation [? ]. Note that all the benchmark models are satisfactory in fitting the
B/C data.

In the rest of the paper, we are mostly sensitive to the high energy (! 10 GeV) description of the propagation.
We check the reliability of our models, by performing a χ2-analysis and comparing the predicted B/C ratio with data
from the most accurate surveys, namely, CREAM [? ], ATIC [? ], HEAO3 [? ], and CRN [? ], at E ≥ 3 GeV. Results
are reported in the last column of Table 1.

Energy loss: All the energy losses are computed within the Galprop code as described in Ref. [? ].
Updated calculations of the ISRF [? ] have estimated a quite different emission in the inner region of the Galaxy,

depending on the assumptions on the metallicity gradient. The picture in the outer region is, however, basically
unchanged, and our results can be only very mildly affected.

The large-scale structure properties of the magnetic field are not extremely important as the turbulence properties
in determining the diffusion. The strength is, on the other hand, crucial for the estimates of both synchrotron radiative
emission and energy loss. It turns out that the latter is a subdominant component of the energy loss term of Eq. ??
in most regions of the Galaxy. A precise estimate of the magnetic field strength is thus marginally relevant for X-
and γ-ray emissions, while it becomes obviously very important when discussing radio and infrared signals.

The magnetic field strength can be estimated from pulsar data as [? ]: B = B0exp(−R−Rs

RB
), with Rs being the

Sun-GC distance, B0 = 2.1 ± 0.3 µG and RB = 8.5 ± 4.7 kpc (similar results from extragalactic sources [? ]). Note
that polarization observations refer only to the line-of-sight component of the magnetic field. Radio synchrotron
measurements suggest higher values for the strength of the total field B, namely, 6 µG near the Sun and about 10
µG in the inner Galaxy (outside the GC), assuming equipartition between the energy densities of magnetic fields and
cosmic rays [? ] (this result is fairly in agreement with observations through the Zeeman splitting of atomic and
molecular lines [? ]). The radial scale length of the equipartition field is of about 12 kpc. On the other hand, analysis
of the WMAP synchrotron foreground data (plus some assumptions on the CR distribution and turbulence model)
can lead to [? ] B0 = 3µG, RB = 11 kpc, and Bturb/B0 = 0.57, not far from the estimate though rotation measures
of pulsars.

We consider the benchmark case B = 5 · exp[−(R − Rs)/10 kpc− |z|/2 kpc] µG, with Rs = 8.5 kpc.

III. SOURCE TERMS

A. Standard primary cosmic ray components

There are strong indications that the main mechanism of acceleration for primary Galactic CRs, up to energies of
100 TeV or so, is the scattering of CR particles with the strong shock wave fronts produced by supernova remnants

Boron over Carbon

compare against observations 
and find α (plus a combination 
of other parameters in the full 
propagation model)



Antiproton flux

kinematic peak expected 
for secondaries, not for a 

primary component

The picture for antiprotons is totally consistent:
Antiprotons are generated in the interaction of primary proton and helium 
cosmic rays with the interstellar gas (hydrogen and helium), e.g., in the 
process:

2

βobs,p ! 2.7 (10)

βobs,p = βinj,p + α (11)

qB ∝ φC ∝ p−βobs,C (12)

φB ∝ p−βobs,B (13)

βobs,B = βobs,C + α (14)

φB/φC ∝ p−βobs,B+βobs,C = p−α (15)

p + H → 3 p + p̄ (16)

-
Use the parameter determination from the B/C ratio, to extrapolate the 
prediction for the p/p ratio: excellent agreement for secondaries only!

Antiproton over proton

Donato et al., arXiv:0810.5292
Latest Pamela data: Adriani et al., 

arXiv:0810.4994



Coming to electrons and positrons: 
Energy losses cannot be neglected (at any energy) for electrons/positrons: 

3

zh D0 α va βinj,nuc βinj,e dvc/dz χ2
red color

kpc 1028 cm2s−1 km/s km/s kpc−1 (d.f.=19) coding

B0 4 3.3 1/3 35 1.85/2.36 1.50/2.54 0 0.67 blue

B1 1 0.81 1/3 35 1.65/2.36 1.50/2.54 0 0.77 green

B2 10 6.1 1/3 35 1.85/2.36 1.50/2.54 0 0.74 red

B3 4 3.25 1/3 45 1.85/2.36 1.50/2.54 10 0.84 orange

B4 4 1.68 1/2 22 2.4/2.2 2.1/2.54 0 0.86 cyan

B5 10 2.8 · e|z|/zs 1/3 35 1.85/2.36 1.50/2.54 0 0.66 magenta

TABLE I: Benchmark models of propagation. The spectral index break for protons and electrons is at 9 and 4 GeV, respectively,
in the cases with Kolmogorov diffusion, and at 40 and 10 GeV in the Kraichnan case. The scale of diffusion in the model B5
is taken to be zs = 4 kpc.

II. COSMIC-RAY PROPAGATION IN THE GALAXY

We adopt the description of cosmic-rays as particles propagating in a determinate environment (i.e., disregarding
the effects induced on the ISM by the interaction with CRs). The CR propagation equation for a particle species i
can be written in the form [30]:

∂ni("r, p, t)

∂t
= "∇ · (Dxx

"∇ni − "vc ni) +
∂

∂p
p2Dpp

∂

∂p

1

p2
ni −

∂

∂p

[

ṗ ni −
p

3
("∇ · "vc)ni

]

+ q("r, p, t) +
ni

τf
+

ni

τr
(1)

where ni is the number density per particle momentum (ni(p)dp = Ni(E)dE, with Ni(E)dE being the number density
in the energy interval (E, E + dE)), q is the source term, Dxx is the spatial diffusion coefficient along the regular
magnetic field lines, "vc is the velocity of the Galactic wind, Dpp is the coefficient of the diffusion in momentum space, ṗ
is the momentum loss rate, and τf and τr are the time scales for fragmentation loss and radioactive decay, respectively.

The transport equation is solved numerically and assuming a cylindrical symmetry, with halo boundaries at disc ra-
dius R = 20 kpc and half-thickness zh as described below. We exploited a modified version of the GALPROP code [31].
The main modifications consist in introducing by input the spatial and spectral profiles of the DM source (computed
within the DarkSUSYpackage [32]), and in including the possibility of a spatially varying diffusion coefficient.

In the following, we mainly consider one-zone models with isotropic diffusion, which can be regarded as the most
extensively tested models of the recent past (see, e.g., Ref. [33] for a review).

Our approach is to perform self-consistent tests in the local region and the parameters in Eq. 1 are chosen to strictly
reproduce the local directly-observed spectra of nuclei and electrons.

The goal of the paper is to study the possibility of disentangling the diffuse signals originated from two different
sources, CRs and DM, having different spatial distributions. The CR injection source is confined to the Galactic
plane, while the DM profile has a spherical shape. The region with intermediate and large z is thus the best target
for the analysis. The propagation reshuffles the distribution of the two populations of electrons (and thus IC and
bremsstrahlung signals), and the γ-ray signal associated to the decays of CR pions. The scaling of the signal along
the z-direction is affected by almost any quantity entering in the transport equation, such as the description of the
diffusion, the wind velocity, the magnetic field structure, and the ISRF distribution. Moreover, it is dramatically
sensitive to the height of the propagation halo, namely, to the boundary condition along the z-axis.

We are not interested in performing a full scan of the propagation parameters space and estimate the corresponding
uncertainties in the CR spectra (see, e.g., Refs. [34, 35]); rather, we want to investigate how different scalings along
the z-direction due to different propagation models can affect the predictions for the signal to background ratio. We
consider six benchmark scenarios of propagation and injection spectra, which are summarized in Table 1. In the
following, we motivate our selection.

Halo height: In addition to the ”conventional” model having zh =4 kpc (named B0), we consider two models of
propagation in which the halo height has been set to zh=1 kpc (model B1) and zh=10 kpc (model B2). The strongest
constraints on the halo height is given by the ”radioactive clocks”, namely, unstable secondaries. Indeed, the ratio
between stable and decaying isotopes is sensitive to the CR confinement time, which is in turn related to the halo
height (and the diffusion coefficient). At present, the most precise measurements is the ratio 10Be/9Be, with the
unstable 10Be decaying in 106 years. In Fig. 1a, we show the spectra of the 10Be/9Be ratio. As expected, zh =4 kpc
seems to be preferred by data. The model B2 is fully consistent with data at low energy (which are the most reliable),

The main effects are due to synchrotron emission on the galactic magnetic 
fields and inverse Compton emission on the CMB and starlight:

2

βobs,p ! 2.7 (10)

βobs,p = βinj,p + α (11)

qB ∝ φC ∝ p  βo b s ; C (12)

φB ∝ p  βo b s ; B (13)

βobs,B = βobs,C + α (14)

φB/φC ∝ p  βo b s ; B +βo b s ; C = p  α (15)

p + H → 3 p + p̄ (16)

ṗ ∝ p2 (17)

τloss !
p

ṗ
∝ p  1 (18)

φe  ∝ qe  · min [τloss, τconf ] ∝ p  β i n j ; e  δ (19)

2

βobs,p ! 2.7 (10)

βobs,p = βinj,p + α (11)

qB ∝ φC ∝ p−βobs,C (12)

φB ∝ p−βobs,B (13)

βobs,B = βobs,C + α (14)

φB/φC ∝ p−βobs,B+βobs,C = p−α (15)

p + H → 3 p + p̄ (16)

ṗ ∝ p2 (17)

τloss !
p

ṗ
∝ p−1 (18)

φe− ∝ qe− · min [τloss, τconf ] ∝ p−βinj,e−δ (19)

2

βobs,p ! 2.7 (10)

βobs,p = βinj,p + α (11)

qB ∝ φC ∝ p−βobs,C (12)

φB ∝ p−βobs,B (13)

βobs,B = βobs,C + α (14)

φB/φC ∝ p−βobs,B+βobs,C = p−α (15)

p + H → 3 p + p̄ (16)

ṗ ∝ p2 (17)

τloss !
p

ṗ
∝ p−1 (18)

φe− ∝ qe− · min [τloss, τconf ] ∝ p−βinj,e−δ (19)

setting a new timescale:

The solution to the diffusion equation becomes (approximately):

3

p + H → ...→ π± + ... (20)

µ± + νµ (21)

e± + νe + νµ (22)

3

p + H → ...→ π± + ... (20)

µ± + νµ (21)

e± + νe + νµ (22)

3

p + H → ...→ π± + ... (20)

µ± + νµ (21)

e± + νe + νµ (22)

with δ=1 for energy losses or δ=α for diffusion.
Secondary electron/positrons are produced, e.g., through: 



The secondary electron/positron source function is proportional to the 
proton flux (after propagation), i.e. it scales like:

3

p + H → ...→ π± + ... (20)

µ± + νµ (21)

e± + νe + νµ (22)

qe± ∝ φp ∝ p−βinj,p−α (23)

φe± ∝ qe± � min [τloss, τconf ] ∝ p−βinj,p−α−δ (24)

3

p + H → ...→ π± + ... (20)

µ± + νµ (21)

e± + νe + νµ (22)

qe± ∝ φp ∝ p−βinj,p−α (23)

φe± ∝ qe± · min [τloss, τconf ] ∝ p−βinj,p−α−δ (24)

with the induced flux, predicted to be about:

Looking at the ratio between the 
(secondary only) positron flux to 
the (mostly primary) electron 
flux, you expects it to scale like:

3

p + H → ...→ π± + ... (20)

µ± + νµ (21)

e± + νe + νµ (22)

qe± ∝ φp ∝ p−βinj,p−α (23)

φe± ∝ qe± · min [τloss, τconf ] ∝ p−βinj,p−α−δ (24)

φe+

φe−
∝ p−(βinj,p−βinj,e+α) (25)

βinj,p − βinj,e + α (26)

i.e. decreasing with energy since 
it would be hard to find a scheme 
in which:

3

p + H → ...→ π± + ... (20)

µ± + νµ (21)

e± + νe + νµ (22)

qe± ∝ φp ∝ p−βinj,p−α (23)

φe± ∝ qe± · min [τloss, τconf ] ∝ p−βinj,p−α−δ (24)

φe+

φe−
∝ p−(βinj,p−βinj,e+α) (25)

βinj,p − βinj,e + α (26)

is negative.

PAMELA measured a 
rising positron fraction
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• The propagation model is wrong: there are extra energy-dependent 
effects which affect secondary positrons (or primary electrons) but not 
the secondary to primary ratios for nuclei (at least at the measured 
energies), e.g.: Piran et al., arXiv:0905.0904; Katz et al., arXiv:
0907.1686

• There is production of secondary species within the CR sources with a 
mechanism giving a sufficiently hard spectrum (reacceleration at SN 
remnants?), e.g.: Blasi, arXiv:0903.2794; Mertsch & Sarkar, arXiv:
0905.3152

• There are additional astrophysical sources producing primary positrons 
and electrons: pulsars are the prime candidate in this list.

• There is an exotic extra source of primary positrons and electrons:    
dark matter sources are the most popular in this class.

• ... 

How to explain a rising positron fraction? 



Few words on the pulsar interpretation: 
There are a few nearby pulsars (Geminga is at only 100 pc) within which 
electron/positron pair production could be efficient enough. Take a 
phenomenological approach and fit the data, e.g.:

Grasso et al., arXiv:0905.0636

Successful fits but with a few caveats, e.g.: you need extremely hard source 
spectra, β≈1.5-1.7; you need to get e /e  out of the source keeping such hard 
spectra; the deduced properties of nearby pulsars should be consistent with 
what you deduce from CRs and photons elsewhere in the Galaxy.

+-



Primary electrons/positrons from DM WIMPs: 
The relevant process is the pair annihilations of non-relativistic WIMPs in 
the DM halo, proceeding mostly through two-body final states:

10 S. Colafrancesco et al.: DM annihilations in Coma

analogous to that sketched above for parent halos with the Bullock et al. or ENS toy models, except that, on average,
substructures collapsed in higher density environments and suffered tidal stripping. Both of these effects go in the
direction of driving larger concentrations, as observed in the numerical simulation of Bullock et al. 2001, where it is
shown that, on average and for M ∼ 5 ·1011M! objects, the concentration parameter in subhalos is found to be about
a factor of 1.5 larger than for halos. We make here the simplified ansazt:

〈cs(Ms)〉 = Fs〈cvir(Mvir)〉 with Ms = Mvir , (23)

where, for simplicity, we will assume that the enhancement factor Fs does not depend on Ms. Following again Bullock
et al. (Bullock et al. 2001), the 1σ deviation ∆(log10 cs) around the mean in the log-normal distribution Ps(cs), is
assumed to be independent of Ms and of cosmology, and to be, numerically, about ∆(log10 cs) = 0.14.

Finally, we need to specify the spatial distribution of substructures within the cluster. Numerical simulations,
tracing tidal stripping, find radial distributions which are significantly less concentrated than that of the smooth DM
components. This radial bias is introduced here assuming that:

ps(r) ∝ g(r/a′) , (24)

with g being the same functional form introduced above for the parent halo, but with a′ much larger than the length
scale a found for Coma. Following Nagai & Kravtsov (Nagai & Kravtsov 2005), we fix a′/a % 7. Since the fraction fs

of DM in subhalos refers to structures within the virial radius, the normalization of ps(r) follows from the requirement:

4π

∫ Rvir

0
r2ps(r) = 1 . (25)

3. Neutralino annihilations in Coma

3.1. Statistical properties

Having set the reference particle physics framework and specified the distribution of DM particles, we can now introduce
the source function from neutralino pair annihilations. For any stable particle species i, generated promptly in the
annihilation or produced in the decay and fragmentation processes of the annihilation yields, the source function
Qi(r, E) gives the number of particles per unit time, energy and volume element produced locally in space:

Qi(r, E) = 〈σv〉0
∑

f

dNf
i

dE
(E)Bf Npairs(r) , (26)

where 〈σv〉0 is the neutralino annihilation rate at zero temperature, the sum is over all kinematically allowed annihi-
lation final states f , each with a branching ratio Bf and a spectral distribution dNf

i /dE, and Npairs(r) is the number
density of neutralino pairs at a given radius r (i.e., the number of DM particles pairs per volume element squared). The
particle physics framework sets the quantity 〈σv〉0 and the list of Bf . Since the neutralino is a Majorana fermion light
fermion final states are suppressed, while – depending on mass and composition – the dominant channels are either
those with heavy fermions or those with gauge and Higgs bosons. The spectral functions dNf

i /dE are inferred from the
results of MonteCarlo codes, namely the Pythia (Sjöstrand 1994, 1995) 6.154, as included in the DarkSUSY package
(Gondolo et al. 2004). Finally, Npairs(r) is obtained by summing the contribution from the smooth DM component,
which we write here as the difference between the cumulative profile and the term that at a given radius is bound in
subhalos, and the contributions from each subhalo, in the limit of unresolved substructures and in view of fact that
we will consider only spherically averaged observables:

Npairs(r) =

[
(ρ′g(r/a) − fs Mvir ps(r))

2

2 M2
χ

+

ps(r)
∫

dMs
dns

dMs

∫
dc ′

s Ps (c ′
s(Ms))

∫
d3rs

(ρ′s g(rs/as))
2

2 M2
χ

]
. (27)

This quantity can be rewritten in the more compact form:

Npairs(r) =
ρ̄2

2 M2
χ

[
(ρ′g(r/a) − fs ρ̃s g(r/a′))2

ρ̄2
+ fs∆2 ρ̃s g(r/a′)

ρ̄

]
, (28)

total 
rate branching

ratio into f

# density of
WIMP pairs

 

e / e  energy spectra of 
two kinds:
+ -

Soft spectra from, e.g., quark final states which produce charged pions 
decaying into leptons;
Hard spectra from, e.g., lepton or gauge boson final states, in which 
electrons and positrons are produced promptly or in a short decay 
chain.

3

p + H → ...→ π± + ... (20)

µ± + νµ (21)

e± + νe + νµ (22)

qe± ∝ φp ∝ p−βinj,p−α (23)

φe± ∝ qe± · min [τloss, τconf ] ∝ p−βinj,p−α−δ (24)

φe+

φe−
∝ p−(βinj,p−βinj,e+α) (25)

βinj,p − βinj,e + α (26)

χχ̄→ ff̄ (27)

(the energy of  f  is equal to the WIMP mass) corresponding to the source 
function:
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Propagate this extra source in analogy to standard primary and secondary 
astrophysical components (only caveat: this source is not located in the gas 
disc, as the astrophysical sources, but spread out in the full diffusive halo).

Different strategies. One possibility is to take again a phenomenological 
approach and adjust a generic WIMP model (defined by WIMP mass and 
dominant annihilation channel) to the data (i.e. find, for a given WIMP 
density, find the annihilation cross section). E.g.: start only with the fit of 
the PAMELA excess in the positron ratio:

either very massive WIMPS, or lighter WIMPs but hard 
annihilation spectra (leptons or W-bosons)
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... then cross correlate, for the same WIMP model, other signals. The 
comparison with antiprotons is very powerful, since there is very little 
room for an exotic  component in that channel:
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The W-boson annihilation channel has an antiproton yield 
which is large and inconsistent with antiproton data for 
WIMPs lighter than 10 TeV or so; leptonic channels are 
unaffected (they do not give rise to a positron yield). 
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... add in the recent measurement of the electron+positron flux by FERMI
(and disregard previous claims by ATIC and PPB-BETS): 
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annihilation into muons, 
heavy WIMPs, large 

“enhancement factors”

This “solution”:
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Slightly different results among the numerous fits to the recent data, but 
convergence on models in which DM is:

• leptophilic, i.e. with pair annihilation into leptons only, or 
into light (pseudo)scalars which for kinematical reasons can 
decay into leptons only (for this second class, see, e.g.: 
Arkani-Hamed et al., arXiv:0810.0713; Nomura & 
Thaler, arXiv:0810.5397);

• heavy, with WIMP masses above the 1 TeV scale;

• with a large (order 1000 or more) “enhancement factor” in 
the source function, either in the annihilation rate because                                                 
_                        (or there is a resonance effect, or DM is 
simply non-thermal) or in the WIMP pair density 
because                .     .               

3

p + H → ... → π± + ... (20)

µ± + νµ (21)

e± + νe + νµ (22)

qe± ∝ φp ∝ p−βinj,p−α (23)

φe± ∝ qe± · min [τloss, τconf ] ∝ p−βinj,p−α−δ (24)

φe+

φe−
∝ p−(βinj,p−βinj,e+α) (25)

βinj,p − βinj,e + α (26)

χχ̄ → ff̄ (27)

〈σv〉T0 & 〈σv〉Tf.o. (28)

〈ρ2
χ〉 & 〈ρχ〉2 (29)
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Enhancements in the indirect detection DM signals are 
often invoked in connection to substructures within the 
Galaxy, as simply stems from: 〈ρ2〉 # 〈ρ〉2

In hierarchical 
structure formation, 
small dense 
structures collapse 
first, merging then 
into larger and less 
dense objects, with a 
substructure 
population partially 
surviving tidal 
disruption in the 
merging:

On average, gaining a factor 2 to 
10 (or maybe 100) in signals.



Sommerfeld enhancement in the cross section: 

DM is charged under a (new) gauge force, mediated by a “light” boson: this 
sets a non-perturbative long-range interaction, analogously to Coulomb 
interaction for positronium: 
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Different possibilities for 
extrapolating the cross section 
from the early Universe:

Hisano, Matsumoto & Nojiri,
(2003); e.g.: Cirelli et al., 
arXiv:0809.2409

The same 1/v enhancement is obtained for a Yukawa potential. In a DM 
context, first studied in the MSSM for pure very massive Winos or 
Higgsinos and weak interaction as gauge force (light W boson limit).

gives the enhancement  
in the cross section:



Arkani-Hamed et al., arXiv:0810.0713

Example: a new (sub-)Gev scale dark sector:
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Hovewer do not assume this is the final word ...
Sample fit to the PAMELA & Fermi electron/positron data, assuming the 
DM signal is dominated by one single substructure, moving along a sample 
orbit, with a sample velocity, as well as for a sample WIMP model (mass 
and annihilation channel), only searching for the optimal distance:  

Hardly any correlation between the point source contribution and the 
contribution from the smooth DM halo component (which in all studies 
displayed so far was scaled by by the “enhancement factor”)



... and do not forget that we may have seen a DM 
signal, but have not seen a DM signature.  

Bergström et al. on model 
by Arkani-Hamed et al.

The sample fit of the data with 
a DM signal:

is analogous to the signal foreseen 
in models of more than a decade 
ago:

Aharonian et al., 2005

except that this 
is a pulsar signal

Cleaner spectral features in upcoming higher statistics measurements (???).
Insist with cross correlations to other DM detection channels.



DM and gamma-ray fluxes:
The source function has exactly the same form as for positrons:

10 S. Colafrancesco et al.: DM annihilations in Coma

analogous to that sketched above for parent halos with the Bullock et al. or ENS toy models, except that, on average,
substructures collapsed in higher density environments and suffered tidal stripping. Both of these effects go in the
direction of driving larger concentrations, as observed in the numerical simulation of Bullock et al. 2001, where it is
shown that, on average and for M ∼ 5 ·1011M! objects, the concentration parameter in subhalos is found to be about
a factor of 1.5 larger than for halos. We make here the simplified ansazt:

〈cs(Ms)〉 = Fs〈cvir(Mvir)〉 with Ms = Mvir , (23)

where, for simplicity, we will assume that the enhancement factor Fs does not depend on Ms. Following again Bullock
et al. (Bullock et al. 2001), the 1σ deviation ∆(log10 cs) around the mean in the log-normal distribution Ps(cs), is
assumed to be independent of Ms and of cosmology, and to be, numerically, about ∆(log10 cs) = 0.14.

Finally, we need to specify the spatial distribution of substructures within the cluster. Numerical simulations,
tracing tidal stripping, find radial distributions which are significantly less concentrated than that of the smooth DM
components. This radial bias is introduced here assuming that:

ps(r) ∝ g(r/a′) , (24)

with g being the same functional form introduced above for the parent halo, but with a′ much larger than the length
scale a found for Coma. Following Nagai & Kravtsov (Nagai & Kravtsov 2005), we fix a′/a % 7. Since the fraction fs

of DM in subhalos refers to structures within the virial radius, the normalization of ps(r) follows from the requirement:

4π

∫ Rvir

0
r2ps(r) = 1 . (25)

3. Neutralino annihilations in Coma

3.1. Statistical properties

Having set the reference particle physics framework and specified the distribution of DM particles, we can now introduce
the source function from neutralino pair annihilations. For any stable particle species i, generated promptly in the
annihilation or produced in the decay and fragmentation processes of the annihilation yields, the source function
Qi(r, E) gives the number of particles per unit time, energy and volume element produced locally in space:

Qi(r, E) = 〈σv〉0
∑

f

dNf
i

dE
(E)Bf Npairs(r) , (26)

where 〈σv〉0 is the neutralino annihilation rate at zero temperature, the sum is over all kinematically allowed annihi-
lation final states f , each with a branching ratio Bf and a spectral distribution dNf

i /dE, and Npairs(r) is the number
density of neutralino pairs at a given radius r (i.e., the number of DM particles pairs per volume element squared). The
particle physics framework sets the quantity 〈σv〉0 and the list of Bf . Since the neutralino is a Majorana fermion light
fermion final states are suppressed, while – depending on mass and composition – the dominant channels are either
those with heavy fermions or those with gauge and Higgs bosons. The spectral functions dNf

i /dE are inferred from the
results of MonteCarlo codes, namely the Pythia (Sjöstrand 1994, 1995) 6.154, as included in the DarkSUSY package
(Gondolo et al. 2004). Finally, Npairs(r) is obtained by summing the contribution from the smooth DM component,
which we write here as the difference between the cumulative profile and the term that at a given radius is bound in
subhalos, and the contributions from each subhalo, in the limit of unresolved substructures and in view of fact that
we will consider only spherically averaged observables:

Npairs(r) =

[
(ρ′g(r/a) − fs Mvir ps(r))

2

2 M2
χ

+

ps(r)
∫

dMs
dns

dMs

∫
dc ′

s Ps (c ′
s(Ms))

∫
d3rs

(ρ′s g(rs/as))
2

2 M2
χ

]
. (27)

This quantity can be rewritten in the more compact form:

Npairs(r) =
ρ̄2

2 M2
χ

[
(ρ′g(r/a) − fs ρ̃s g(r/a′))2

ρ̄2
+ fs∆2 ρ̃s g(r/a′)

ρ̄

]
, (28)

total 
rate branching

ratio into f

# density of
WIMP pairs

 

Energy spectra for the 
following components:

1) Continuum: i.e. mainly from f → ...→ π0 → 2γ

11) Monochromatic: i.e. the 1-loop induced                          andχχ→ 2γ
χχ→ Z0γ (in the MSSM, plus eventually others on other models)

111) Final state radiation (internal Bremsstralungh)

5

Qmax ∼ 20 keV (40)

F " ρχ

Mχ
· 〈v〉 (41)

R " NT F σχN " NT
ρχ

Mχ
〈v〉σχN " 4 events

kg day
ρ0.3

χ

M100
χ

〈v200〉
(

σ1 pb
χN

A

)
(42)

dR

dER
" Rtot

r E0
R

exp
(
− ER

r E0
R

)
(43)

r =
4 Mχ MN

(Mχ + MN )2
(44)

E0
R ER (45)

log
(

dR

dER

)
(46)

χχ → l+ l−γ (47)
especially relevant for:

for Majorana fermions



Then for a model  for which all three are relevant (e.g. pure Higgsino)The 
source function has exactly the same form as for positrons:

Bergström et al., 
astro-ph/0609510

FRS

pions
lines

FRS

pions + lines 

including a typical detector 
energy resolution
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dΦγ

dEγ
(Eγ , θ, φ) =

1
4 π

〈σv〉T0

2 M2
χ

∑

f

dNf
γ

dEγ
Bf ·

∫

∆Ω(θ,φ)
dΩ′

∫

l.o.s.
dl ρ2

χ(l)

The induced gamma-ray flux can be factorized:

Particle Physics DM distribution

Targets which have been proposed:

• The Galactic center (largest DM density in the Galaxy)

• The diffuse emission from the full DM Galactic halo

• Dwarf spheroidal satellites of the Milky Way

• Single (nearby?) DM substructures without luminous counterpart

• Galaxy clusters

• The diffuse extragalactic radiation

• ...



A number of “excesses” claimed in recent years; the Fermi GRT has 
collected over one year of data by now and will allow for much firmer 
statements. Preliminary results on DM searches have been presented in 
summer conferences, unfortunately reporting on upper limits only.

E.g.: S. Murgia, TeV Particle Astrophysics 09

• No evidence for a WIMP contribution within 1° of the GC;

• The diffuse Galactic emission at intermediate and E > 1 GeV is 
lower then from EGRET data, consistent with the background;

• A set of upper limits have been inferred for dwarfs and clusters;

• Upper limits on monochromatic emission from the Galaxy 

• No evidence for extended sources without luminous counterpart;

• The diffuse extragalactic can be simply fitted by a single power law.
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WIMP CDM in DM halos:

Ωχh2 ! 3 · 10−27cm−3s−1

〈σAv〉T=Tf

χ χ

(σv)T=0 ∼ 〈σv〉T=Tf and this matching:

hadronization
and/or decay

SM1 SM2

γγ γX0

π0
→

(ϒ-lines)

⇒
1-loop
states

...

(ϒs with continuum
spectrum)

2γ
ambient

backgrounds
and fields

Synchrotron
Inv. Compton
Bremstrahlung
Coulomb
Ionization

radio
IR
X-rays
ϒs
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introducing values for numerical constants, Êp ! 0.463 ν̂1/2B̂−1/2, with ν̂ the frequency in GHz and B̂ the magnetic
field in mG. Analogously, the induced γ–ray luminosity is:

νLγ
ν = 2π

σv

M2
χ

∫
dr r2ρ(r)2 E2 dNγ

dE
. (15)

It is useful to make a few simple guess on some of the quantities introduced above. Along the line of [14], we

assume the γ–ray spectrum per annihilation following the law: dNγ/dx ! Ã x−B̃e−C̃x, with x ≡ E/Mχ. It is
also a fair assumption to approximate the integrated e+ − e− yield as a power law plus an exponential cutoff:
Ye(E) ! Ax−Be−Cx. The differential yields of secondary photons and e+ − e− are plotted in Fig. 4a, for three
sample cases of two-body final states from WIMP pair annihilations. These plots are obtained linking to simulations
of decay/hadronization performed with the PYTHIA Monte–Carlo package [59] and stored libraries contained in the
DarkSUSY package [60]; we will refer to such kind of simulations everywhere in the paper when making detailed
estimates of WIMP induced signals. As simplest guess for radial dependence for the magnetic field and the DM
profile, we consider the single power-law scalings, B(r) = B0(r/r0)−β and ρ(r) = ρ0(r/a)−γ . Eqs. 14 and 15 become:






νLsyn
ν =

1.8 A

0.463B
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M2
χ
ρ2
0 a2γ

(
ν̂/B̂0

)(1−B)/2

M̂−B
χ

∫
dr r2−2γ

(
r

r0

) β
2
(1−B)

exp




−

C
√

4.66

(
ν̂/B̂0

)1/2

M̂χ

(
r

r0

) β
2




 GeV

νLγ
ν =2πÃ

σv

M2
χ
ρ2
0 a2γ Ê2−B̃

M̂1−B̃
χ

∫
dr r2−2γexp

[

−C̃
Ê

M̂χ

]

GeV

(16)

with M̂χ the WIMP mass in GeV.
The right-hand-sides of Eq. 16 show some differences. For the gamma-ray luminosity, the energy cutoff follows

simply from energy conservation and thus scales with the dark matter mass, except for a O(1) factor related to the
annihilation mode. For synchrotron emission, at a fixed mass, the frequency cutoff increases with the magnetic field,
again except for a O(1) factor related to the annihilation channel. Away from the cutoff, the synchrotron emissivity
tends to originate from a larger spatial region with respect to the γ–ray case, due to the additional positive power
β/2(1 − B) in the radial dependence. At fixed mass and frequency, if the magnetic field is large enough to avoid the
frequency cutoff, the synchrotron signal is wider than the gamma-ray signal. This is typically the case in the radio
band and, to a much smaller extent, in the infrared band. Going to very high observed frequencies, however, the
magnetic field (or the energy of the radiating electron or positron) needs to increase to exceedingly large values, which
might be met only very close to the central BH (or for extremely massive WIMPs and/or hard e+ − e− spectrum, as
encoded in the factor C of Eq. 16). Scalings of the required magnetic field, as a function of peak radiating energy,
for a few values of the observed frequency are shown in Fig. 3b: one can see that for the observed frequencies getting
into the X-ray band (say 1018 Hz) a very small radial interval is selected, corresponding to the largest allowed value
for the magnetic field. Hence, in this case the synchrotron signal is actually expected to be originated in a very small
region around the central BH, possibly much smaller compared to the gamma-ray flux.

We can now make a sketchy estimate to find which of the limits in the different bands in Fig. 1 might be more
constraining. We write the ratio between synchrotron and gamma-ray luminosity in the form:

r =
νLsyn

ν

νLγ
ν

=
1.8

2π 0.463B

A

Ã

M̂1+B−B̃
χ ν̂(1−B)/2

Ê2−B̃

∫
dr r2−2γ

[
B̂(r)

]−(1−B)/2
exp

[
−CEp(r)−C̃E

Mχ

]

∫
dr r2−2γ

. (17)

In Fig. 4b we plot the relative multiplicity between photons and electrons for the three benchmark final states
from WIMP pair annihilations considered in Fig. 4a. This illustrates the fact that, sufficiently far away from the
energy cutoff and for a generic WIMP annihilation channel (except, of course, for the case of prompt emission of
monochromatic gammas, and/or electrons/positrons we are not considering here), the photon and electron/positron
yields are comparable and hence that it is difficult to avoid the correlation between the gamma and the synchrotron
signal by selecting a specific WIMP model. In Eq. 17 this implies that the ratio A/Ã is typically O(1). The last term
in Eq. 17 does critically enter in boosting or suppressing the ratio of luminosities only in case the exponential cutoff
(or the upper limit in the radial integral) is playing a role, i.e. at very large observational frequencies for synchrotron
emission (the X-ray band) or for shallow density profiles. Restricting to the case of singular halo profiles, and, e.g.
the radio band, it is of order O(1) or O(0.1). To see this more precisely, let’s take W+ −W− as annihilation channel,
as an intermediate case between the soft quark spectra and the hard leptonic spectra. We find that integrated e+−e−

yield, for masses in the range Mχ = 100 GeV–10 TeV, can be fairly well approximated by (A, B, C) ! (0.1, 0.7, 3);
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yields are comparable and hence that it is difficult to avoid the correlation between the gamma and the synchrotron
signal by selecting a specific WIMP model. In Eq. 17 this implies that the ratio A/Ã is typically O(1). The last term
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yield, for masses in the range Mχ = 100 GeV–10 TeV, can be fairly well approximated by (A, B, C) ! (0.1, 0.7, 3);8
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ÊM̂
χ

]

G
eV

(16)

w
ith

M̂
χ

th
e

W
IM

P
m

ass
in

G
eV

.
T

h
e

right-h
an

d
-sid

es
of

E
q.

16
sh

ow
som

e
d
iff

eren
ces.

F
or

th
e

gam
m

a-ray
lu

m
in

osity,
th

e
en

ergy
cu

toff
follow

s
sim

p
ly

from
en

ergy
con

servation
an

d
thu

s
scales

w
ith

th
e

d
ark

m
atter

m
ass,

excep
t

for
a

O
(1)

factor
related

to
th

e
an

n
ih

ilation
m

od
e.

F
or

syn
ch

rotron
em

ission
,
at

a
fi
xed

m
ass,

th
e

frequ
en

cy
cu

toff
in

creases
w

ith
th

e
m

agn
etic

fi
eld

,
again

excep
t

for
a

O
(1)

factor
related

to
th

e
an

n
ih

ilation
ch

an
n
el.

A
w

ay
from

th
e

cu
toff

,
th

e
syn

ch
rotron

em
issivity

ten
d
s

to
origin

ate
from

a
larger

sp
atial

region
w

ith
resp

ect
to

th
e

γ
–ray

case,
d
u
e

to
th

e
ad

d
ition

al
p
ositive

p
ow

er
β
/2(1

−
B

)
in

th
e

rad
ial

d
ep

en
d
en

ce.
A

t
fi
xed

m
ass

an
d

frequ
en

cy,
if

th
e

m
agn

etic
fi
eld

is
large

en
ou

gh
to

avoid
th

e
frequ

en
cy

cu
toff

,
th

e
syn

ch
rotron

sign
al

is
w

id
er

th
an

th
e

gam
m

a-ray
sign

al.
T

h
is

is
typ

ically
th

e
case

in
th

e
rad

io
b
an

d
an

d
,

to
a

m
u
ch

sm
aller

extent,
in

th
e

in
frared

b
an

d
.

G
oin

g
to

very
h
igh

ob
served

frequ
en

cies,
h
ow

ever,
th

e
m

agn
etic

fi
eld

(or
th

e
en

ergy
of

th
e

rad
iatin

g
electron

or
p
ositron

)
n
eed

s
to

in
crease

to
exceed

in
gly

large
valu

es,
w

h
ich

m
ight

b
e

m
et

on
ly

very
close

to
th

e
central

B
H

(or
for

extrem
ely

m
assive

W
IM

P
s

an
d
/or

h
ard

e
+
−

e
−

sp
ectru

m
,
as

en
cod

ed
in

th
e

factor
C

of
E

q.
16).

S
calin

gs
of

th
e

requ
ired

m
agn

etic
fi
eld

,
as

a
fu

n
ction

of
p
eak

rad
iatin

g
en

ergy,
for

a
few

valu
es

of
th

e
ob

served
frequ

en
cy

are
sh

ow
n

in
F
ig.

3b
:

on
e

can
see

th
at

for
th

e
ob

served
frequ

en
cies

gettin
g

into
th

e
X

-ray
b
an

d
(say

10
1
8

H
z)

a
very

sm
all

rad
ial

interval
is

selected
,
corresp

on
d
in

g
to

th
e

largest
allow

ed
valu

e
for

th
e

m
agn

etic
fi
eld

.
H

en
ce,

in
th

is
case

th
e

syn
ch

rotron
sign

al
is

actu
ally

exp
ected

to
b
e

origin
ated

in
a

very
sm

all
region

arou
n
d

th
e

central
B

H
,
p
ossib

ly
m

u
ch

sm
aller

com
p
ared

to
th

e
gam

m
a-ray

fl
u
x.

W
e

can
n
ow

m
ake

a
sketchy

estim
ate

to
fi
n
d

w
h
ich

of
th

e
lim

its
in

th
e

d
iff

erent
b
an

d
s

in
F
ig.

1
m

ight
b
e

m
ore

con
strain

in
g.

W
e

w
rite

th
e

ratio
b
etw

een
syn

ch
rotron

an
d

gam
m

a-ray
lu

m
in

osity
in

th
e

form
:

r
=

ν
L

s
y
n

ν

ν
L

γν
=

1.8

2π
0.463

B

AÃ
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E.g., the Coma radio halo can be fitted in spectrum and 
angular surface brightness by a DM induced component:
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but actually this corresponds to a full seed, extending 
from the radio to the gamma-ray band:

the associated 
gamma-ray flux within 
the sensitivity reach 
of Fermi in the next 
few years
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An excess from standard astrophysical sources would be confined to the 
galactic disc, one from DM annihilation would be spread out to a much 
larger scale, leading to different predictions for the IC radiation. 
IC terms (plus FSR or pion terms) for two sample (leptophilic) models 
fitting the Pamela excess in the positron ratio:  

cross checked against Fermi 
preliminary data at 
intermediate latitudes  

a more solid prediction when 
looking at high latitudes ...  

11

10
1

10
2

10
3

10
4

10
5

10
6

E [MeV]

10
-5

10
-4

10
-3

10
-2

E
2
 J

 [
M

e
v

 c
m

-2
 s

-1
 s

r-1
]

CR total
DMe
DM!
EGB

FERMI

10
o
 < b < 20

o
 0

o
 < l < 360

o

10
1

10
2

10
3

10
4

10
5

10
6

E [MeV]

10
-5

10
-4

10
-3

10
-2

E
2
 J

 [
M

e
v

 c
m

-2
 s

-1
 s

r-1
]

FERMI
 0

o
 < l < 360

o

10
o
 < b < 20

o

10
1

10
2

10
3

10
4

10
5

10
6

E [MeV]

10
-5

10
-4

10
-3

10
-2

E
2
 J

 [
M

e
v

 c
m

-2
 s

-1
 s

r-1
]

FERMI
0

o
 < l < 360

o

10
o
 < b < 20

o

FIG. 5: γ-ray diffuse spectrum at intermediate latitudes (10◦ < b < 20◦), integrated over longitudes 0◦ < l < 360◦ and compared
to the FERMI preliminary data [77]. Left Panel: Emission in the propagation model B0. The CR (primary+secondary) spectra
associated to π0-decay, IC, and bremsstrahlung are shown by thin dotted lines. The thick solid blue line is the sum of the three
components. The solid black line shows the extragalactic background in the model described in the text (thick) and fitted from
EGRET data [20] (thin). The IC and FSR emission associated to the WIMP DMe are shown by thick dotted lines. The IC
and γ-ray from π0-decay signals induced by the WIMP DMτ are shown by thick dashed lines. Central Panel: Emission in the
propagation models B1 (green) and B2 (red). Same line styles of the left panel. Right Panel: The same of central panel, but
for the propagation models B3 (orange), B4 (cyan), and B5 (magenta).

B. γ-ray emission

The discussion in the previous Section pointed out that, in order to detect a DM-induced signal in the diffuse
emission of the Galaxy, intermediate and high latitudes are the best targets.

At high latitudes, the diffuse extragalactic gamma-ray background (EGB) is expected to become the dominant
background component. To estimate the level of the extragalactic emission in the FERMI preliminary data [77]
reported in Fig. 5, we rely on the EGRET data and we consider the fit obtained in Ref. [20] (upper black curve). The
sharp increase, with respect to EGRET, in sensitivity of the FERMI telescope to point sources may, on the other
hand, lower significantly such term. In three months of observations, FERMI has already detected an amount of
individually resolved active galactic nuclei (which are believed to be the main component of the EGB) corresponding
to ∼ 7% of the EGRET extragalactic diffuse gamma-ray background [78]. We consider a model for the contribution
of unresolved blazars as in Ref. [79] (lower black curve in Fig. 5 and 7), estimating the FERMI point source sensitivity
as 1.6 · 10−9cm−2s−1, roughly corresponding to 3 years of observations. Another crucial ingredient to estimate the
diffuse extragalactic radiation is absorption of gamma-rays at high energies, mainly due to pair production on the
extragalactic background light emitted by galaxies in the ultraviolet, optical and infrared bands. We consider the
parametrization of this effect in Ref. [80], as derived in the context of the ΛCDM cosmological model.

In Fig. 5, we plot the γ-ray diffuse spectrum at 10◦ < b < 20◦, integrated over longitude (0◦ < l < 360◦), and
compared to the FERMI preliminary data. These measurement do not confirm the EGRET excess in the GeV energy
range, with the level of the detected diffuse flux being significantly reduced. In Fig. 5a we show the case of the
”conventional” propagation model B0. The first remark is that the sum (blue solid line) of three CR components
(blue thin dotted lines), namely, IC, bremsstrahlung, and π0-decays, plus the extragalactic background contribution
(black solid line), can approximately account for the measured flux at E ≤ 10 GeV (note that propagation models
have not been tuned to do so, while we are just extrapolating from the LIS of nuclei). Exotic components, claimed in
order to explain the EGRET excess, are now significantly constrained, at least at mid-latitudes1.

In the same plot one can see that the γ-ray flux induced by our benchmark DM models is more than one order
of magnitude smaller than the detected flux at E ≤ 10 GeV, while it becomes comparable to or higher than the
background at E ! 100 GeV. At such energies, both the IC and FSR signals are relevant in the model DMe (thick
dotted line), while in the model DMτ (thick dashed line) the flux is driven by the π0-decay emission.

1 Other observations reported by the FERMI LAT telescope (e.g., Vela pulsar [81]) go in the same direction, namely, reporting a reduced
flux at GeV energies with respect to the EGRET observations. The current most likely interpretation of the EGRET excess is thus an
instrumental bias. This would imply that a significant contribution from exotic components at few GeV is severely constrained in any
portion of the sky.
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FIG. 7: γ-ray diffuse spectrum at high latitudes (50◦ < b < 60◦) integrated over longitudes 0◦ < l < 360◦. Line styles and
colors as in Fig. 5.

WIMP scenario DMτ are again very favourable in all the propagation models. The emission induced by DMe is also
detectable, being, roughly, of the same level of the sum of the backgrounds at E ! 100 GeV. This is no longer true
at higher latitudes, where the EGB takes over and such emission becomes too faint to give a clear signature. Fig. 6,
shows that, as explained in the discussion above, the longitudinal profiles become flatter than at lower latitudes. The
emissions come mostly from the local region and therefore these predictions can be assumed as rather robust.

Note that the enhancement in the DM-induced IC emission in the propagation models with zh = 10 kpc (B2 and B5)
with respect to the ”conventional” case (zh = 4 kpc) is more significant than at intermediate latitudes, and viceversa
for the model B1. The B2 case is more favourable than the B5 model, since in the latter the e+/e− population is
slightly depleted at large z since the spatial diffusion coefficient increases in such region. The predictions in the models
B3 and B4 are again analogous to the ”conventional” case.

The level we predict for diffuse γ-ray fluxes is about E2J ! 1 − 3 · 10−4 MeV cm−2 s−1 sr−1 at E ! 100 GeV (see
Figs. 5-8). Considering the FERMI performances stated in Ref. [82] (roughly, an effective area of Aeff = 8 · 103 cm2

and a field of view FoV = 2.4 sr), the expected number of counts, for an energy bin size of ∆Eγ = 50 GeV, is about
Nγ ≥ 70 sr−1 yr−1 . We deduce that the diffuse γ-ray spectra as predicted in Figs. 5 and 7 can be detected with a
statystical error smaller than 10% in 1 year of observation. The precise description of longitudinal and latitudinal
profiles requires, on the other hand, some years of observations. Combining different slices of the sky, however, the
disentaglement between the CR source having a ”disc” shape and the WIMP induced source having a spherical shape
will be feasible in the forthcoming future. Full sky-maps, at 150 GeV for the π0-decay signal associated to primary
CR and DMτ , and for the IC emission associated to primary CR electrons and DMe is shown in Figs. 9 and 10.
Differences in morphologies for the various components are indeed very clear.

C. Radio and infrared emission

Now we turn the discussion on the synchrotron emission in the radio and infrared bands. Electrons and positrons
injected by DM or CR source interact with the Galactic magnetic field (described in Section 3), giving raise to a
synchrotron radiation. Due to the spectral behaviour, the synchrotron emission is the dominant component of the
Galactic diffuse emission at low frequency. The sky-map of Ref. [83] at 408 MHz is the standard calibration for
the synchrotron diffuse signal (altough it could include a significant amount of unresolved sources). Foreground
estimations in the WMAP data [84] suggest a spectral index for the synchrotron emission ∼ 3, at frequency up to 60
GHz. (An anomalous component has be claimed to be present in the innermost region of the Galaxy, a result which
depends on the template used for the foreground estimation. The associated spectral index turns out to be harder
than 3. Such component, dubbed ”WMAP haze”, has been associated to be a possible DM signal due to WIMP
annihilations [15–18]. Since the haze is associated to the central portion of the Galaxy, we will not discuss it here.)

In Fig. 11, we show the emission associated to primary+secondary CR electrons in the ”conventional” model at
intermediate latitudes. Matching the diffuse emission induced by CRs with the observed synchrotron emission in the
whole Galaxy is beyond the goal of this paper. Note, however, that the spectral index is very close to 3, as required.
The overall normalization is also very close to the one estimated by the WMAP team.

Again, in order to explore a possible DM signal, the region at intermediate and large latitudes is the best tar-
get. Indeed, the magnetic field slowly decreases outside the disc (we adopt the benchmark case B = 5 exp[−(R −

10˚< b < 20˚ 50˚< b < 60˚

Multifrequency approach to test local e /e  excesses:+ -
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FIG. 7: γ-ray diffuse spectrum at high latitudes (50◦ < b < 60◦) integrated over longitudes 0◦ < l < 360◦. Line styles and
colors as in Fig. 5.

WIMP scenario DMτ are again very favourable in all the propagation models. The emission induced by DMe is also
detectable, being, roughly, of the same level of the sum of the backgrounds at E ! 100 GeV. This is no longer true
at higher latitudes, where the EGB takes over and such emission becomes too faint to give a clear signature. Fig. 6,
shows that, as explained in the discussion above, the longitudinal profiles become flatter than at lower latitudes. The
emissions come mostly from the local region and therefore these predictions can be assumed as rather robust.

Note that the enhancement in the DM-induced IC emission in the propagation models with zh = 10 kpc (B2 and B5)
with respect to the ”conventional” case (zh = 4 kpc) is more significant than at intermediate latitudes, and viceversa
for the model B1. The B2 case is more favourable than the B5 model, since in the latter the e+/e− population is
slightly depleted at large z since the spatial diffusion coefficient increases in such region. The predictions in the models
B3 and B4 are again analogous to the ”conventional” case.

The level we predict for diffuse γ-ray fluxes is about E2J ! 1 − 3 · 10−4 MeV cm−2 s−1 sr−1 at E ! 100 GeV (see
Figs. 5-8). Considering the FERMI performances stated in Ref. [82] (roughly, an effective area of Aeff = 8 · 103 cm2

and a field of view FoV = 2.4 sr), the expected number of counts, for an energy bin size of ∆Eγ = 50 GeV, is about
Nγ ≥ 70 sr−1 yr−1 . We deduce that the diffuse γ-ray spectra as predicted in Figs. 5 and 7 can be detected with a
statystical error smaller than 10% in 1 year of observation. The precise description of longitudinal and latitudinal
profiles requires, on the other hand, some years of observations. Combining different slices of the sky, however, the
disentaglement between the CR source having a ”disc” shape and the WIMP induced source having a spherical shape
will be feasible in the forthcoming future. Full sky-maps, at 150 GeV for the π0-decay signal associated to primary
CR and DMτ , and for the IC emission associated to primary CR electrons and DMe is shown in Figs. 9 and 10.
Differences in morphologies for the various components are indeed very clear.

C. Radio and infrared emission

Now we turn the discussion on the synchrotron emission in the radio and infrared bands. Electrons and positrons
injected by DM or CR source interact with the Galactic magnetic field (described in Section 3), giving raise to a
synchrotron radiation. Due to the spectral behaviour, the synchrotron emission is the dominant component of the
Galactic diffuse emission at low frequency. The sky-map of Ref. [83] at 408 MHz is the standard calibration for
the synchrotron diffuse signal (altough it could include a significant amount of unresolved sources). Foreground
estimations in the WMAP data [84] suggest a spectral index for the synchrotron emission ∼ 3, at frequency up to 60
GHz. (An anomalous component has be claimed to be present in the innermost region of the Galaxy, a result which
depends on the template used for the foreground estimation. The associated spectral index turns out to be harder
than 3. Such component, dubbed ”WMAP haze”, has been associated to be a possible DM signal due to WIMP
annihilations [15–18]. Since the haze is associated to the central portion of the Galaxy, we will not discuss it here.)

In Fig. 11, we show the emission associated to primary+secondary CR electrons in the ”conventional” model at
intermediate latitudes. Matching the diffuse emission induced by CRs with the observed synchrotron emission in the
whole Galaxy is beyond the goal of this paper. Note, however, that the spectral index is very close to 3, as required.
The overall normalization is also very close to the one estimated by the WMAP team.

Again, in order to explore a possible DM signal, the region at intermediate and large latitudes is the best tar-
get. Indeed, the magnetic field slowly decreases outside the disc (we adopt the benchmark case B = 5 exp[−(R −

A result which is solid against uncertainties in the propagation model: the 
previous model extrapolated to  a few sample setups consistent with B/C

Note also: the prediction is insensitive to the halo model 
(since it is well away from the GC), and to whether it is 
related to annihilating or decaying DM (since it is 
normalized to the locally measured  electron/positron flux)



SuperWIMPs (or E-WIMPs, or ...)
Suppose the lightest particle odd under some descrite 
symmetry (hence stable) interacts super-weakly rather than 
weakly. It is NOT in thermal eq. in the early Universe, still 
it is not totally blind with respect to the thermal bath. 
E.g.: a gravitino in the gauge-mediated SUSY breaking 
scheme, LSP and with gravitational coupling only.  
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Rewrite Boltzmann eq. as:
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THERMAL PRODUCTION: At high temperatures, the dominant contribution to the production come

from 2-body scatterings with colored states, mediated by non-renormalizable operators:

• gravitino case: ΩTH
G̃

h2
! 0.2

(

100GeV

mG̃

)

( mg̃

1TeV

)2
(

TR

1010GeV

)

[Bolz, Brandenburg & Buchmüller ’01]

• axino case: ΩTH
ã h2

! 0.6
( mã

0.1GeV

)

(

1011GeV

fa

)2 (

TR

104GeV

)

[LC, HB KIm, JE Kim & Roszkowski ’01, Brandenburg & Steffen ’04]

NOTE the completely different dependence on the ”X”WIMP mass !!! It is due to the fact that the

gravitino is produced via its Goldstino component, whose couplings are enhanced by the ratio
mg̃

mG̃
!

Technical point: Hard Thermal loop resummation needed to regularize the gluon IR divergences.

At temperatures of the order of the superpartner masses also the effect of the sparticle decays become

important, so there is a stronger dependence on the parameters of supersymmetry breaking.

On top of this you may have a relevant thermal relic 
component for the NLSP and its off-eq. decay into the LSP:

ΩLSP !
MLSP

MNLSP
ΩNLSP

Analogously for the axino, right-handed sneutrino , 
KK-graviton, KK right-handed neutrino, ...



Pradler & Stffen, arXiv:
0710.4548

E.g.: CMSSM and the shift in the allowed  parameter 
space, e.g. in the stau coannihilation region:

Accelerator signature of 
this scenario: the NLSP 
is long-lived and 
(possibly) charged!

Astrophysical / cosmological implications as well as strong 
constraints if the decay NLSP →LSP happens after BBN 
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Constraints from NLSP → gravitino 
LSP due to the injection in the plasma of 
(non-thermal): photons  or electrons 
(photo-dissociation of D), hadrons 
(changing the n, p budget an affecting 
He and/or D). This is the counterpart of 
the cosmological gravitino problem, i.e. 
relic gravitinos decaying into 
(neutralino???) LSP at late times:

+ novel idea to constrain the 
models with charged NLSP, since 
the presence of these relics  at 
the BBN time would catalyze 
some BBN reactions otherwise 
suppressed, such as: 

Very strong constraints since



Recent idea: avoid the constraints from late decay of the NLSP by ...
speeding up the decay via R-parity violation (Buchmüller et al., hep-ph/
0702184).  Introduce: 

Emergency exit:

You need the gravitino to be sufficiently long lived:

and the NLSP decaying fast enough: 

Twist the model little further and require the gravitino lifetime to match
the value required to get the level of yields in todays halo to reproduce the 
PAMELA excess, Fermi signals, ect. ect. (Ibarra et al., 2008-2009)

Just one example of the several models on the market for decaying DM.
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Sketch of the 
formation of the 

local group:

Moore et al., 2005

following primordial 
density perturbations in 
the non-linear regime

Numerical N-body 
simulations:



Moore et al., 2005

Self-similarity of structures on 
different mass scales:

Galaxy  ∼ 10   M  12
❍.

Cluster of 
galaxies  ∼ 10    M  15

❍.



Two main features deduced for the simulations:
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mass scale

Correlation 
between the 
two parameters 
in the model:



Is the ΛCDM model facing a crisis? 
There are possible areas of disagreement between theory
(more exactly numerical N-body simulations of the 
theory in the non-linear regime) and observations:

✶Dark matter distribution on small scales, and in
    particular the shape of DM profiles towards the
    center of galaxies, and the abundance of substructures
    in DM halos.

✶Morphology of galaxies, luminosity functions, age of
    stellar populations, disk sizes, and possibly other
    “baryonic observables”; most likely all these are in
    connection with our poor understanding of star 
    and/or galaxy formation;



Friction between the measured rotation curve 
of low mass galaxies and ΛCDM profiles:  

e.g., McGaugh et al. 2003
Rotation curves of low mass galaxies

Preference to isothermal cores

-Kuzio de Naray et al. [2006]

Scatter in central density
profiles larger than CDM
predictions, and mean slopes
are more shallow than NFW.
-Simon et al. [2005]

Simon et al. [2005]

McGaugh et al [2003]

Louie Strigari

Shallower rise observed:
a large core in small galaxies?

ρNFW ∝ 1
r (r + a)2

Theory predicts
cusp and concentration



Problem, or theoretical and/or observational bias?

de Blok & Bosma, 2002

Innermost radius in measurement 
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Claim: there is no 
case in which the 
dynamical models 
favor the 
“theoretical” model 
(even in smoother 
versions than 
NFW) over 
“phenomenological” 
cored profiles

NFW

core



In a ΛCDM cosmology, a typical sketch of a 
dark matter halo from N-body simulations is:

Moore et al, 
2005

a large fraction of the total mass is bound in dark 
substructures with masses ... 



... down to the WIMP free-streaming scale,   ∼ 10   M   , Green, 
Hofmann & Schwartz,2004 (or as high as  10  M    , Profumo, 
Sigdurson & Kamionkowski, 2006)   :

Diemand, Moore
 & Stadel, 2005

Numerical 
simulation, z=26

0.024 pc

2
❍.

❍.
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Madau, Diemand & Kuhlen, 2006

cumulative number

Cumulative number of  satellites in simulations versus
the number of observed satellites in the Galaxy:  

Again: real problem or simply an astrophysical mechanism 
being overlooked ?

Madau et al. 7

Fig. 5.— Cumulative number of Via Lactea subhalos within r200 (solid curve) as well as all Milky Way satellite galaxies within 420 kpc
(filled squares), as a function of circular velocity. The data points are from Mateo (1998), Simon & Geha (2007), Munoz et al. (2006), and
Martin et al. (2007), and assume a maximum circular velocity of Vmax =

√
3σ (Klypin et al. 1999). The short-dashed curve connecting

the empty squares shows the expected abundance of luminous satellites after correcting for the sky coverage of the SDSS. Dash-dotted
curve: circular velocity distribution for the 65 largest Vmax,p subhalos before accretion (LBA sample). Long-dashed curve: circular velocity
distribution for the “fossil of reionization” EF sample. This includes the 61 largest (sub)halos at z = 13.6 [Vmax(z = 13.6) > 4 kms−1]
plus the 4 (sub)halos that reach a Vmax,p > 38 km s−1 after the epoch of reionization and are not in the largest 61 at z = 13.6.

ure 5: interestingly, this sample includes 12 of the 14
subhalos above Vmax = 20 km s−1 identified today, and
26 of the 35 identified above Vmax = 15 km s−1, i.e. the
most massive today and LBA subpopulations basically
coincide at large values of Vmax.5 Therefore a solution
to the substructure problem in which only the largest 50-
100 Vmax,p subhalos at all epochs were able to form stars
efficiently would automatically place the luminous Milky
Ways dwarfs in the most massive subhalos at the present
epoch. To match the circular velocity function of the
LBA sample, however, the observed dwarf spheroidals
(dSphs) must have circular velocity profiles that peak
at values well in excess of the stellar velocity disper-
sion (see Fig. 5 and discussion below). Note that the
cut in Vmax,p instead of Vmax of the LBA sample re-
quires star formation to be inhibited in all subhalos with

5 Note that the same is not true for the top 10 LBA subhalos
(Kravtsov et al. 2004; Diemand et al. 2007b; Strigari et al. 2007a),
as the largest Vmax,p systems suffer the largest mass loss and are
removed from the top ten list of more massive systems at z = 0.

Vmax,p < 21.9 km s−1 or virial temperature

Tvir =
µmpV 2

max,p

2kB

< 17, 000 K. (6)

4. SUPPRESSING DWARF GALAXY FORMATION

The two thresholds for efficient star formation given in
equations (5) and (6) provide the correct total number of
luminous Milky Way satellites (assumed to be around 60-
70), not a match to the observed circular velocity func-
tion. A careful look at Figure 5 suggests two possible
solutions to the mismatch problem:

1. stars in the Milky Way dSphs are deeply embedded
within their dark matter halos. The halo circu-
lar velocity profiles peak well beyond the luminous
radius at speeds significantly higher that expected
from the stellar line-of-sight velocity dispersion, i.e.
Vmax ∼ 3σ as suggested by Stoehr et al. (2002) and
Peñarrubia et al. (2007). This scenario would shift
the data points in Figure 5 by about a factor

√
3

further to the right, making the mass distribution
of the luminous Milky Way dwarf spheroidals agree

Madau et al. 11

Fig. 7.— The normalized cumulative radial distribution of Milky Way satellites (lower solid curve). The upper solid curve connecting
the squares shows the expected distribution of luminous satellites after correcting for the sky coverage of the SDSS. For plotting and
comparison purposes, we have placed Leo T and Phoenix within r200 = 389 kpc. Long-dashed curve: distribution for the 65 largest Vmax,p

subhalos before accretion (Via Lactea LBA sample). Dot-short dashed curve: “fossil of reionization” EF sample. Short-dashed-long dashed
curve: 65 largest Vmax Via Lactea subhalos today. Dotted curve: all 4021 Via Lactea subhalos with Msub/Mhost > 10−6. Short-dashed
curve: dark matter distribution.

is to use the integrated dSph “central mass” within a
physical radius comparable to the extent of the lumi-
nous region, and compare it to those of Via Lactea’s
subhalos at similar galactocentric distances. The cen-
tral masses M0.6 (mass within 0.6 kpc) and M0.1 (mass
within 0.1 kpc) are robustly constrained by kinematic
data. Given Via Lactea’s force resolution of 90 pc,
M0.6 is also robustly determined in simulated subhalos.
M0.1, however, is likely affected by gravitational soften-
ing and may be systematically underestimated. Here we
use the most likely values and 90% confidence regions
of M0.1 from Strigari et al. (2007b) and of M0.6 from
Strigari et al. (2007a), as well as the best-fit M0.6 values
from Walker et al. (2007). We then find all Via Lactea
subhalos within 40% in distance and within 25% of the
M0.1 or M0.6 values of each satellite, and then average
over their Vmax and Vmax,p to find the most likely host
size.6 The range of plausible peak circular velocities was
determined using all subhalos within the 90% confidence

6 For the dSphs marked with an asterisk in Table 2 no subhalos
were found in the quoted range, and an estimate of the most likely
host size was made using the subhalo with the smallest quadratic
sum of the relative difference in distance and central mass.

region in M0.1 (or M0.6). The results of this exercise
are given in Table 2. Consistent with the expectations
from the concentration-radius relation, for a given dSph
central mass the most likely Vmax values of its host sub-
halos are larger at large galactocentric distances. If, e.g.
Ursa Minor with M0.6 = 5.3 M! were to lie at a distance
of 300 kpc, its most likely host would have Vmax,p =
31 km s−1 and Vmax = 26 km s−1. Coma Berenices with
M0.1 = 1.9 M! at 300 kpc would typically be hosted by
a Vmax,p = 30 km s−1 and Vmax = 21 km s−1 subhalo.

7. SUMMARY AND CONCLUSIONS

In this paper we have reported results from the two
highest resolution simulations of Galactic CDM substruc-
ture to date, Via Lactea and 1e8Ell. The two runs fol-
low the hierarchical assembly of a Milky Way-sized halo
down to z = 0 and of an elliptical-sized halo down to
z = 0.5, respectively, using different cosmological param-
eters. Our main findings can be summarized as follows:

1. Via Lactea and 1e8Ell are characterized by simi-
larly steeply rising subhalo mass functions. In the
range 200mp < Msub < 0.01Mhost, the best-fit
slope of the differential distribution, dN/dMsub ∝

radial distribution



Need for a particle physics solution?
Goal: start with a scale invariant CDM power spectrum 
and then remove power on small scales.
Mechanism: introduce a model mildly (i.e. at level of 
current bounds) violating one of the 5 main ingredients 
usually assumed for standard CDM:
1) Dissipation-less: e.g., DM with a electric/magnetic
    dipole moment, Sigurdson et al. 2004
2) Collision-less: self interacting DM, 
    Spergel & Steinhardt 2000
3) Fluid limit: ... 
4) Classical: fuzzy DM, Hu, Barkana & Gruzinov 2000
5) Cold: warm DM, Hogan & Dalcanton 2000


